
Refactor program with HLint suggestions

Matthew Pickering

Industrial strength refactoring tools are something that the Haskell community
as a whole has desired for a number of years. As a result a number of projects
have spawned to provide varying levels of abstraction to the refactoring process.
Recently, ghc-exactprint has promised to provide a robust foundation for
refactoring. This summer I propose to use ghc-exactprint and HaRe to add a
--refactor flag to HLint which will automatically apply relevant suggestions.

ghc-exactprint

I’d really like HLint to have an “automatically replace” flag, but I
want to do it preserving whitespace and style, which is quite hard.
Neil Mitchell

Whilst the eye-catching end-goal of any refactoring tool is the transformation,
another key tenet of refactoring is that the changes don’t affect any irrelevant
parts of the program. It follows that if no transformation is applied then
one should expect no changes to the source file. This is the challenge which
ghc-exactprint attempts to solve.

ghc-exactprint works in two phases. The first transforms the GHC AST such
that all absolute positions are replaced with relative positions. The second
printing phase performs the inverse transformation and prints the desired output.
Now to perform transformations, you only need to specify where your elements
should be located relative to each other and the preceding element. This makes
performing transformations whilst retaining layout easier than ever before.

API Annotations

This approach is only feasible now1 because, before GHC 7.10 the parser dis-
carded all information about the location of keywords. This made tools such

1Previously HaRe used an extremely brittle mechanism which performed transformations
on the AST but printed using the token stream produced by the lexer. This meant that
performing any transformation it was necessary to update both. (see Li 2006, 57 - 59)

1

https://github.com/chrisdone/hindent/issues/75#issuecomment-70427343

as haskell-src-exts necessary if you wanted to precisely print a source file.
Now, whilst parsing, the GHC parser records the information of these keywords
in a map indexed by the annotation type (AnnKeywordId) and the SrcSpan of
the element it came from. This information can then be used to recreate the
original document with sufficient care.

Using this new and powerful machinery, writing robust mechanical transforma-
tions is much easier that before.

HLint

HLint is a very widely used linting tool. It suggests a wide array of refactorings,
most of which are trivial for a programmer to perform. The README on the
HLint homepage talks briefly about the possibility of refactoring.

If you want to automatically apply suggestions, . . . , there are
a number of reasons that HLint itself doesn’t have an option to
automatically apply suggestions:

The underlying Haskell parser library makes it hard to modify the
code, then print it similarly to the original. Sometimes multiple
transformations may apply. After applying one transformation, others
that were otherwise suggested may become inappropriate. I am
intending to develop such a feature, but the above reasons mean it is
likely to take some time.

I will firstly address the feasibility of using HaRe to perform these refactorings
and then the possibility that refactorings may interfere with each other.

Flavours of refactoring

I categorise the types of refactorings found in HLint into three different categories.
A full classification is provided in Appendix A.

(1) Direct substitutions - these are listed in a source file and then a naive
search of the AST is performed to check if there are any matches. Below
is a simple example from the default definitions.

error = putStrLn (show x) ==> print x
^ ^ ^
| Severity |

| Expression to replace
| Expression to insert

2

http://haskell.inf.elte.hu/docs/7.11.20150318.noWin32/html/libraries/ghc-7.11.20150318/ApiAnnotation.html#t:AnnKeywordId

(2) Simple transformations - Other simple transformations are achieved by
traversing over the HSE AST. The simplest is the one which checks for a
redundant dollar sign.2

[msg x y | InfixApp _ a d b <- [x], opExp d ~= "$"
,let y = App an a b, not $ needBracket 0 y a
, not $ needBracket 1 y b]

(3) Complex type sensitive transformations - The most complicated trans-
formation in HLint is the check for duplicated expressions. This is per-
formed by maintaining a map of previously seen expressions and checking
whether the current expression appears in the map. Details can be seen in
src/Hint/Duplicate.hs.

I predict that automating both (1) and (2) are easy to achieve with further
development of ghc-exactprint and HaRe. It has already been proved that
a combination of these programs can be used to perform these kinds of simple
substitutions.

(3) requires more care to avoid name clashes but would be achievable using a
type-aware refactoring. Additionally, HLint does not suggest how to avoid the
code duplication (as it does not know any semantic information) which means
that implementing this suggestion would require additional machinery only found
in HaRe.3

Conflicting Suggestions

There are certain situations where HLint suggests refactorings which would
conflict with each other. Consider the following simple example4

example = f $ (x y)

which generates the following warnings.

example.hs:1:11: Warning: Redundant bracket
Found:

f $ (x y)
Why not:

f $ x y

example.hs:1:11: Warning: Redundant $
Found:

2A dollar sign ($) is redundant when both arguments do not require parentheses.
3Such as a fresh supply of variable names and the ability to check for name capture.
4As suggested by Neil Mitchell.

3

https://github.com/ndmitchell/hlint/blob/master/src/Hint/Duplicate.hs

f $ (x y)
Why not:

f (x y)

2 suggestions

Clearly, as the suggestions overlap each other, choosing to apply either one first
results in the other becoming invalid but both reduce to an equivalent normal
form.

One simple way to deal with this is to detect when two suggestions are overlapping.
If so, then it can only be safe to perform one of the transformations. In general it
would seem sensible to prioritise errors rather than the warnings but it would be
possible explore different heuristics for this rare occurrence. Another possibility
would be to provide an interface for the user to decide which suggestion they
would like to apply.

Connecting HLint and HaRe

So far we have discussed how it is both possible to perform source transformations
which preserve layout with ghc-exactprint as well as the possibility of applying
HLint suggestions. The final piece of the puzzle is how to link the two together.

Depending directly on HaRe

These transformations could easily be achieved by depending directly on HaRe
and calling API methods in order to perform the necessary transformations. This
approach would perhaps be simple but is undesirable due to HaRe’s dependency
on the GHC API. Said dependency is rather undesirable as it ties your users
to a particular version of GHC. For a project in as wide use as HLint, this is
unacceptable.

Intermediate specification format

Much like pandoc-types separates document synthesis from document genera-
tion. Perhaps the cleanest solution would be to separate refactoring specification
from transformation. Designing a DSL for specifying refactorings without a
dependency on HaRe would mean that external libraries could specify transfor-
mations before invoking HaRe and piping in their desired transformation. A
typical invocation might then be as follows;

hlint --refactor | ghc-hare

4

this could be folded inside HLint as a system call.

An obvious problem with this approach is how to specify Haskell AST elements to
use in the transformations. For variable renaming, one only need provide a new
name for the variable. But, say we want to inject more complicated expressions
the problem becomes more difficult. A solution is to use the parseExpression
endpoint exposed by GHC 7.105 and rely on your user to be able to at least give
you a valid string representation of the construct they wanted to insert.

For example, if a user wanted to replace concat . map f with concatMap then
the program may look as follows:

(1) The types of refactorings allowed are specified in a separate module.

-- In a separate library, not depending on GHC.
data Refactor = Replace SrcSpan String | ...

(2) The refactoring is specified inside HLint.

-- In HLint
findReplacement :: ... -> Refactor
findReplacement expr = Replace sspan "concatMap"

where
sspan :: GHC.SrcSpan
sspan = findReplacementLocation expr

(3) The refactoring is interpreted inside HaRe.

-- In HaRe
replaceExpr :: GHC.SrcSpan -> GHC.LHsExpr -> ...

refactor :: Refactor -> ...
refactor (Replace span expr) =

let parsedExpr = parseExpression expr
in replaceExpr span parsedExpr

Initially, designing the intermediate library will be difficult. It isn’t clear which
refactoring operations should be atomic and even then there are clear overheads
to performing composite refactorings without informed optimisation. For that
reason I propose a very naive intermediate layer which is only intended to
work between HLint and HaRe. Constructors should directly correspond to
refactorings offered by HaRe as to simulate calling the API without causing a
dependency on GHC.

5A full list of newly exposed endpoints is: parseModule, parseImport, parseStatement,
parseDeclaration, parseExpression, parseTypeSignature, parseFullStmt, parseStmt,
parseIdentifier, parseType and parseHeader.

5

Higher-level DSL

Coming full circle, after HaRe, Thompson and Li went on to design a second
refactoring tool, this time for Erlang. The community uptake was much greater
and as a result they designed such a DSL for scripting refactorings. (Li and
Thompson 2012) If time permitted it would be productive to extend my proposed
specification format to a more fully featured DSL which enabled users to specify
their refactorings. Using Li and Thompson’s work could provide a useful starting
point. This design work is most likely outside the scope of this project.

Longer term vision

Propagating API changes

With the capability to read a serialisation format, library authors could distribute
a changes file which would then be used by HaRe to perform the necessary changes.
This is similar to the idea that Roman Cheplyaka suggested at HIW 2012.

Name resolution would be an important and difficult challenge to overcome.
Under the influence of NoImplicitPrelude, HLint already provides erroneous
suggestions as the substitution mechanism performs syntactic rather than seman-
tic matching. I think that extending HLints matching mechanism to perform
semantic matching would be difficult. haskell-src-exts doesn’t immediately
resolve names, and so it would be necessary to use haskell-names to pro-
vide name resolution. This in turn relies on the interface files generated by
hs-gen-interface. These kinds of changes can lead you down a rabbit hole
and so are not something I plan to pursue in detail this summer.

Caching a loaded module

Applying many small disjoint operations individually could get very expensive
as the source file is reloaded by HaRe on each separate transformation. A
better approach would be to inspect each transformation and apply disjoint
transformations without reloading the file.

Updated vim and Emacs bindings

Most Haskell refactoring tools provide bindings to both vim and Emacs, it is
also important that HaRe provides such bindings. Once the HaRe API stabilises
in the next year this is something I could provide towards the tail end of the
summer.

6

https://www.youtube.com/watch?v=Ae-6uIMQPmU

Promotion

It is well-known that the secret to the success of any library is a mixture of
solving a cool problem and a suitable level of promotion. HaRe has been around
for a number of years but has not gained very much traction. Once it is easy to
write your own transformations then I would look to write a series of blog posts
demonstrating how easy Haskell program synthesis can be.6

6Or maybe just how you can now simultaneously change you names of all your cost centres
at once. The reader can decide which she finds more appealing.

7

About Me

Since successfully completing a project working on Pandoc last year I have
remained involved in the Haskell community. I have continued to contribute to
Pandoc through triaging bug reports and contributing infrastructure patches.

Over the winter I completed an internship at the social media startup Borders
where I worked on writing slack-api and contributing to internal admin tools.

I am already intimately familiar with ghc-exactprint after recently completing
a significant refactoring of the core machinery. This work has made me well
aware of how fiddly these kind of foundational tools can be! Something to be
conscious of when committing a summer to a project.

Timeline

Due to university exams, I plan to start a month late and finish a month late.
This arrangement worked well last summer.

Start End Activity
25th May 20th June Inactive due to university exams.
20th June 20th July Work on ghc-exactprint and HaRe to

provide robust transformations for simple
refactorings like those found in HLint.

20th July 20th August Design a simple intermediate library which
can be used to bridge between HLint and
HaRe.

20th August 20th September Fine tune the intermediate library with
experience gained in the first two months.

Deliverables

1. Solidify the relationship between HaRe and ghc-exactprint by providing
primitive refactorings in ghc-exactprint.

2. A standalone refactoring DSL (provided by a separate library) based on
expression replacements.

3. Modifying HLint to produce suggestions in this format.
4. Modify HaRe to understand this DSL and perform the replacements.

8

https://www.google-melange.com/gsoc/project/details/google/gsoc2014/mattpickering/5757334940811264
http://www.borde.rs/
https://hackage.haskell.org/package/slack-api-0.3

Appendix A - HLint refactorings classified

Kind Module
Type

Comments
Substituting
malformed
pragmas

Comment.hs (2) Pragmas and comments are
treated differently in the AST so
it may be a little bit fiddly to
transform one from the other.

Removing
redundant paren-
theses/dollars

Bracket.hs (2) This should be straightforward.

Duplicated code
blocks

Duplicate.hs (3) As previously discussed this will
be difficult to get right without
additional work to HaRe.

Remove unused
language
extensions

Extensions.hs (2)

Combining
import
declarations

Import.hs (2) Can be viewed as a deletion
followed by an insertion.

Replace lambda
functions with
common library
definitions

Lambda.hs (2)/(1) Very much the same flavour as
straight substitution.

Replace
expressions built
with list
constructors
with sugar

List.hs (2) Care needed to correctly manage
annotations.

Replace
recursive
functions with
higher-order
functions

ListRec.hs (2) Best to deal with by insertion
and deletion rather than trying
very hard to maintain formatting.

Direct
substitutions
given by a file.

Match.hs (1) Direct substitution.

Replace monadic
expressions with
more idiomatic
counterparts.

Monad.hs (2) Direct substitution.

9

Kind Module
Type

Comments
Check for camel
case variable
name

Naming.hs (3) Renaming requires knowledge of
types but HLint currently doesn’t
suggest names which will clash
with definitions in the module.

Checks for
OPTIONS and
LANGUAGE
pragmas which
should be
expressed
differently.

Pragma.hs (2) Almost direct substitution.

Structural
refactorings

Structural.hs (2)

Checks to see if
every usage of
unsafePer-
formIO has a
{-# NOINLINE
#-} pragma

Unsafe.hs (2) Care will be needed to make sure
to attach the pragma to the
correct location.

References

Li, Huiqing. 2006. “Refactoring Haskell Programs.” PhD thesis. http://kar.kent.
ac.uk/14425/.

Li, Huiqing, and Simon Thompson. 2012. “A domain-specific language for
scripting refactorings in Erlang.” Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 7212 LNCS: 501–15. doi:10.1007/978-3-642-28872-2_34.

10

http://kar.kent.ac.uk/14425/
http://kar.kent.ac.uk/14425/
http://dx.doi.org/10.1007/978-3-642-28872-2/_34

	ghc-exactprint
	API Annotations

	HLint
	Flavours of refactoring
	Conflicting Suggestions

	Connecting HLint and HaRe
	Depending directly on HaRe
	Intermediate specification format
	Higher-level DSL

	Longer term vision
	Propagating API changes
	Caching a loaded module
	Updated vim and Emacs bindings
	Promotion

	About Me
	Timeline
	Deliverables
	Appendix A - HLint refactorings classified
	References

