
Working with Source Plugins
Matthew Pickering

University of Bristol

United Kingdom

Nicolas Wu

Imperial College London

United Kingdom

Boldizsár Németh

Eötvös Loránd University

Hungary

Abstract
A modern compiler calculates and constructs a large amount

of information about the programs it compiles. Tooling au-

thors want to take advantage of this information in order to

extend the compiler in interesting ways. Source plugins are

a mechanism implemented in the Glasgow Haskell Compiler

(GHC) which allow inspection and modification of programs

as they pass through the compilation pipeline.

This paper is about how to write source plugins. Due to

their nature—they are ways to extend the compiler—at least

basic knowledge about how the compiler works is critical to

designing and implementing a robust and therefore success-

ful plugin. The goal of the paper is to equip would-be plugin

authors with inspiration about what kinds of plugins they

should write and most importantly with the basic techniques

which should be used in order to write them.

CCS Concepts • Software and its engineering→ Func-
tional languages; Source code generation; Preprocessors.

Keywords tools, plugins, metaprogramming

ACM Reference Format:
Matthew Pickering, Nicolas Wu, and Boldizsár Németh. 2019. Work-

ing with Source Plugins. In Proceedings of the 12th ACM SIGPLAN
International Haskell Symposium (Haskell ’19), August 22–23, 2019,
Berlin, Germany. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3331545.3342599

1 Introduction
Many modern compilers are fantastic and extensible beasts:

the trick is to find appropriate extension points for plugins

in these systems. Plugins allow users to extend their func-

tionality with domain-specific transformation and analysis

passes that would not be appropriate in the main release.

Source plugins make GHC extensible by allowing users an

easy way to modify and inspect the phases of compilation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Haskell ’19, August 22–23, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6813-1/19/08. . . $15.00

https://doi.org/10.1145/3331545.3342599

for source programs. Source plugins can affect the parser,

renamer, type checker, and many other phases.

The type of a plugin graphModules that extracts informa-

tion about the dependency structure of a module is:

graphModules :: [CommandLineOption]
→ ModSummary → TcGblEnv → TcM TcGblEnv

An invocation of graphModules opts m tc takes a list of

options, summary information about amodule, and the result

of type checking the module as an argument. With this the

plugin produces a potentially modified type checked module.

After type checking is finished the plugin is invoked and

then compilation proceeds as before. This way the user can

add program elements, modify existing ones, or extract some

information about a module as it is being compiled.

Plugins are packaged in a module and enabled with a

command line flag. A plugin exports an identifier called

plugin :: Plugin, that interacts with the rest of the system.

module GraphModules (plugin) where
plugin :: Plugin
plugin = defaultPlugin
{ typecheckResultAction = graphModules }

When the user invokes the GraphModules plugin it will out-

put a dot graph of the dependency structure of their module.

This is achieved by using the -fplugin flag to pass the mod-

ule name as a parameter to GHC.

The purpose of this paper is to provide a road-map for the

plugin system, and the main contributions are:

1. a description of the full interface of extension points,

detailing their role in the compilation phases (Section 2),

2. a demonstration of the main tasks involved in plugin

development through three worked examples (Section 3),

3. an explanation of how the plugin system can be used

within the context of the rest of the system (Section 4),

This is a pragmatic paper and so in addition to these contribu-

tions we include tips and hints to writing plugins (Section 5),

an overview of some interesting plugins that have been writ-

ten by the community (Section 6), and a discussion of how

plugins interact with other language features (Section 7).

We also include a comparison of source plugins with other

metaprogramming tools implemented in GHC and similar

compilers (Section 8). The plugin system interacts with much

of GHC’s pipeline, and is the culmination of over a decade’s

worth of effort from numerous contributors (Section 9).

https://doi.org/10.1145/3331545.3342599
https://doi.org/10.1145/3331545.3342599
https://doi.org/10.1145/3331545.3342599

Haskell ’19, August 22–23, 2019, Berlin, Germany Matthew Pickering, Nicolas Wu, and Boldizsár Németh

parsedResultAction :: [CommandLineOption]→ ModSummary → HsParsedModule → Hsc HsParsedModule 1

renamedResultAction :: [CommandLineOption]→ TcGblEnv → HsGroup GhcRn→ TcM (TcGblEnv ,HsGroup GhcRn) 2

typeCheckResultAction :: [CommandLineOption]→ ModSummary → TcGblEnv → TcM TcGblEnv 3

spliceRunAction :: [CommandLineOption]→ LHsExpr GhcTc → TcM (LHsExpr GhcTc) 4

interfaceLoadAction :: ∀lcl.[CommandLineOption]→ ModIface → IfM lcl ModIface 5

Figure 1. Plugin extension point interface

2 Plugin Interface
Source plugins intercept different parts of the GHC compila-

tion pipeline, allowing plugin authors to access information

at almost every significant stage. Each part of the pipeline

that can be intercepted is called an extension point.

A plugin is an ordinary Haskell module which exports an

identifier called plugin ::Plugin. The name of the plugin is the

name of the module. The value plugin is a record containing

functions that define the different plugin actions (Figure 1).

A plugin is usually defined by overriding the defaultPlugin
which contains identity transformations for all the passes.

The source plugin mechanism extends the existing plugins

mechanism with new extension points.

plugin :: Plugin
plugin = defaultPlugin
{parsedResultAction = parserPlugin }

parserPlugin :: [CommandLineOption]
→ ModSummary
→ HsParsedModule
→ Hsc HsParsedModule

When a plugin is loaded, the compiler executes the relevant

plugin action at the relevant point of compilation.

Command line options can be passed to the plugin us-

ing the -fplugin-opt flag. The optoins that are passed are

made available to the plugin in the [CommandLineOption]
argument where a CommandLineOption is just a String.

2.1 Extension Points
There are five new extension points which make up the API

for source plugins. These are integrated into the GHC com-

pilation pipeline [10]. These extension points correspond to

an interface of five functions (Figure 1), with labels corre-

sponding to those in the diagram of the pipeline (Figure 2).

The compilation pipeline has phases that will parse, re-

name, type check and desugar code before it is passed on to

a lower level. Additionally, if the code contains templates,

splicing of code may also occur. These phases work with var-

ious representations of the source code as they pass through

the compilation pipeline: LHsExpr GhcPs, LHsExpr GhcRn,
LHsExpr GhcTc, and Exp, before finally producing CoreExpr
values, which are passed into the various extension points.

LHsExpr GhcPs

LHsExpr GhcRn

LHsExpr GhcTc

Exp

CoreExpr

5

parse

lower

1

rename

2

typecheck

3

desugar

4
eval

load

Figure 2. GHC compilation pipeline with extension points

1 Parser Plugin The plugin can be used to inspect and

modify the result of the parser. It runs in the Hsc monad

which is limited to emitting simple errors and accessing

the global environment.

2 Renamer Plugin A renamer plugin runs after the names

in each group of declarations have been resolved. Renam-

ing and type checking are interleaved with running splices

so the source program is split up into groups delimited

by splices before they are renamed. After each group has

been renamed the user can inspect and modify the group.

3 Type Checker Plugin The plugin can be used to in-

spect and modify the result of the type checker. This is

run as the last action in the source compilation pipeline

before the source language is desugared.

4 Splice Plugin A splice plugin is run on an expression

contained in a splice before it is evaluated. The implemen-

tation should be similar to a type checker plugin but a

type checker plugin runs after splicing is completed so it

is too late to modify any expressions contained in a splice.

5 Interface Plugin When an import statement is resolved

the interface file for thatmodule is loaded. This plugin runs

after it is loaded so that it can inspect the interface files

that are being brought into scope as they are requested.

Working with Source Plugins Haskell ’19, August 22–23, 2019, Berlin, Germany

2.2 Controlling Recompilation
During the implementation of source plugins it was noticed

that the recompilation check would always recompile a mod-

ule if a plugin was enabled for that module. Many plugins

are pure, which means that unless their input changes then

the output is the same.

The solution is to introduce a new extension point to

a plugin which allows the plugin author to specify how a

plugin should affect recompilation.

pluginRecompile :: [CommandLineOption]
→ IO PluginRecompile

This function will be run during the recompilation check

which happens at the start of every module compilation. It

returns a value of the PluginRecompile data type.

data PluginRecompile = ForceRecompile
| NoForceRecompile
| MaybeRecompile Fingerprint

There are three different ways to specify how a plugin

affects recompilation.

NoForceRecompile It doesn’t contribute anything to the re-

compilation check. We will only recompile a module if we

would normally recompile it.

ForceRecompile The module the plugin is enabled for should

always be recompiled. For example, the plugin reads an

externally changing source.

MaybeRecompile Computes a Fingerprint which we add to

the recompilation check to decide whether we should

recompile.

2.2.1 Library Functions
The Plugins interface provides some library functions for

common configurations. The impurePlugin function returns

the constant ForceRecompile result. This is the default for
the field since it is a conservative choice that also happens

to maintain backwards compatibility.

impurePlugin :: [CommandLineOpts]
→ IO PluginRecompile

impurePlugin = return ForceRecompile

The purePlugin function is useful for static analysis tools

which don’t modify the source program at all and just output

information. Other pluginswhichmodify the source program

in a predictable manner such as the GraphModules plugin
should also be marked as pure.

purePlugin :: [CommandLineOpts]→ IO PluginRecompile
purePlugin = return NoForceRecompile

If you have some options which affect the output of the

plugin then you might want to use the flagRecompile option
which causes recompilation if any of the plugin flags change.

flagRecompile :: [CommandLineOption]
→ IO PluginRecompile

flagRecompile =
return ·MaybeRecompile · fingerprintFingerprints
· map fingerprintString · sort

It is sometimes necessary to be overly conservative when

specifying recompilation behaviour. For example, you can’t

decide on a per-module basis whether to recompile or not.

Perhaps the interface could be extended with this informa-

tion if users found it necessary.

3 Plugin Development
Working with the plugin interface requires an understanding

of some of the internal GHC data types that represent various

parts of the system. This section details the main points

of interest for the development of three plugins: haskell-
indexer (Section 3.1), idioms-plugin (Section 3.2), and assert-
explainer (Section 3.3). These have been chosen to showcase

different parts of the source plugin system.

3.1 haskell-indexer
Source plugins are useful for performing analysis of source

programs. The haskell-indexer1 plugin analyses a source file

and emits information about the document’s structure in the

kythe
2
indexing format, which is used to provide language-

agnostic code tools. This involves information about a sym-

bol’s definition, its uses and other intra-project references.

The haskell-indexer plugin is an example of a plugin which

doesn’t modify the user’s program, making it an easy first

example to understand.

The haskell-indexer plugin is an example that uses a type

checker plugin 3 . These plugins run after the end of type

checking and have access to the final internal state of the

type checker. This means that analysis plugins can inspect

fully type checked bindings and other information the type

checker produces.

The extension point for haskell-indexer is a type checker
plugin called indexModule:

indexModule :: [CommandLineOption]
→ ModSummary
→ TcGblEnv
→ TcM TcGblEnv

The idea behind the plugin is to inspect the contents of

TcGblEnv , the internal state of the type checker, summarise

it, and then output the result in the kythe index format. This

is repeated for each module. The kythe entries files can then

be combined to produce indexing information for an entire

project or an entire ecosystem.

1https://github.com/google/haskell-indexer
2https://kythe.io

https://github.com/google/haskell-indexer
https://kythe.io

Haskell ’19, August 22–23, 2019, Berlin, Germany Matthew Pickering, Nicolas Wu, and Boldizsár Németh

The haskell-indexer plugin takes several arguments which

control its output, for example, where to output the indices

and which package is currently being indexed.

TheModSummary and TcGblEnv provide information about

the state of the module that is currently being compiled. Most

analysis plugins will inspect these data structures in order to

learn information about the current module to report back

to the user.

ModSummary The ModSummary contains meta informa-

tion about the module such as the name of the module, the

location of the module’s source code, information about

its interface files and so on. The most important field in

the ModSummary for plugin authors is the ms_mod field

which contains aModule. AModule contains the unit iden-
tifier for the package the module belongs to as well as the

name of the current module.

data Module = Module {moduleUnitId :: UnitId
,moduleName ::ModuleName }

A plugin author should use this information to inform

themselves of the module their plugin is currently pro-

cessing if it is important for their analysis.

TcGblEnv All the information specific to the contents of

the module is present in TcGblEnv . The data type is quite
large so an author should consult GHC’s documentation

in order to familiarise themselves with its contents, but

some important fields will be highlighted here.

The bindings for a module are located in the tcg_binds
field. Their type is LHsBinds GhcTc, which indicates that

the bindings are fully type checked. This field only con-

tains bindings (both function and value declarations); other

declaration types are present in other fields. For example,

class instances are found in tcg_insts, pattern synonym

declarations in tcg_patsyns, and type family instances in

tcg_fam_insts.
The source structure of these different types of declara-

tions is lost after type checking. The internal representa-

tion of a pattern synonym that remains after type checking

(PatSyn) contains no information about the source posi-

tion or structure of the pattern synonym.

The renamed source can be retained for inspection in

a type checker plugin if a command line flag is enabled.

The keepRenamedSource plugin (defined in Plugins) is a
renamer plugin which turns on this flag. When it is en-

abled the renamed source structures can be found in the

tcg_rn_decls field.
In short, a plugin author should inspect the contents of

the TcGblEnv before starting to write their plugin as they

may find that the information they want to summarise

already present and can be reused.

The implementation of the plugin inspects the command

line options, as well as ModSummary and TcGblEnv before
outputting the indices. The unchanged TcGblEnv is returned

by the plugin so that the compilation continues as normal

for the rest of the pipeline.

3.2 Idioms Plugin
The idioms-plugin3 is a source plugin which implements

idiom brackets [11]. This is an example of a plugin that mod-

ifies the user’s program. Modifying a program is more com-

plicated than analysing a program because correct syntax

has to be constructed.

An idiom bracket is a context where whitespace should

be interpreted as applicative application rather than normal

function application. The “syntax” for an idiom bracket is a

singleton list surrounded by parentheses.

> ([(+) (Just 1) (Just 2)])
Just 3

The source plugin identifies occurrences of this pattern and

rewrites the contained expression by the rules of idiom brack-

ets, so the above code becomes:

pure (+) ⟨∗⟩ Just 1 ⟨∗⟩ Just 2

What about singleton lists? They still work correctly, even

without special logic in the implementation. ([5]) is trans-
formed to pure 5 which equals [5].

The idioms-plugin is a parser plugin 1 . Parser plugins run

immediately after parsing and therefore have to implement

the following interface:

pluginImpl :: ModSummary
→ HsParsedModule
→ Hsc HsParsedModule

A HsParsedModule contains the parsed syntax tree for the

user’s program.

The plugin works by first traversing this syntax tree in

order to find the occurrences of singleton lists surrounded

by brackets. It is convenient to implement these traversals

using SYB [9] because all the data types defined by GHC

define Data instances:

transform dflags =
SYB.everywhereM (SYB.mkM transform′) where…

Once a list surrounded by parentheses is identified, it is

checked to see whether the list is immediately contained

within brackets. The transformation is not applied if there

are any spaces between the two. This is to give the illusion

that ([and]) are individual syntactic entities.

inside :: SrcSpan→ SrcSpan→ Bool
inside (RealSrcSpan a) (RealSrcSpan b) = and
[srcSpanStartLine a == srcSpanStartLine b
, srcSpanEndLine a == srcSpanEndLine b
, srcSpanStartCol a + 1 == srcSpanStartCol b

3https://github.com/phadej/idioms-plugins

https://github.com/phadej/idioms-plugins

Working with Source Plugins Haskell ’19, August 22–23, 2019, Berlin, Germany

, srcSpanEndCol a == srcSpanEndCol b + 1]
inside = False

Finally, now the correct locations have been identified,

the plugin constructs the necessary syntax to perform the

transformation. There are many combinators included in

GHC for building expressions. A good place to start looking

is the HsUtils module.

For a parser plugin you need to construct a LHsExpr GhcPs
that is a syntax tree which contains unresolved references to

variables. These are called RdrNames. The plugin constructs

RdrNames for pure and ⟨∗⟩ before manipulating the user-

written program in order to insert the combinators.

pureRdrName, appRdrName :: RdrName
pureRdrName = mkRdrUnqual (mkVarOcc "pure")
appRdrName = mkRdrUnqual (mkVarOcc "<*>")

This transformation works like the RebindableSyntax
extension where the pure and ⟨∗⟩ are resolved to whatever

definition of pure and ⟨∗⟩ the module user has in scope. In

Section 5.4 we’ll discuss about how to use precise references.

Finally, the expression is reconstituted by applying pure to
the first argument and then combined together using ⟨∗⟩. The

combinator nlHsApps creates an application of a RdrName
to a list of arguments.

transformExpr :: LHsExpr GhcPs
→ [LHsExpr GhcPs]
→ LHsExpr GhcPs

transformExpr f xs = foldl app puref xs where
puref = nlHsApps pureRdrName [f]
app fe e = nlHsApps appRdrName [fe, e]

Implementing a transformation like this using a different

parser to the one implemented in GHC would be very frus-

trating due to inevitable differences in the behaviour of the

parsers and complexity in modifying source files.

3.3 assert-explainer
The assert-explainer4 plugin rewrites an assertion to provide

additional information to the user when the assertion fails.

assert (length xs == 4)

An assert is a special function introduced by the pluginwhich
marks the body should be manipulated by the plugin. The

plugin modifies the expression to also print out the values

of all subexpressions if the assertion fails.

- Assertion failed!
length xs == 4 /= True (at Test.hs:18:12-25)

I found the following sub-expressions:
- length xs = 3
- xs = [1,2,3]

4https://github.com/ocharles/assert-explainer

Knowing further information about the assertion failure can

make debugging much easier.

assert-explainer is a type checker plugin 3 which means

that it is implemented using the same interface as haskell-
indexer. However, assert-explainer synthesises syntax. Gen-
erating syntax in a type checker plugin is more complicated

than a parser plugin because the syntax has to be explicitly

typed and all evidence that the type checker produces has

to be filled in.

Writing a type checker plugin has other advantages though,

the compiler knows a lot more information about the pro-

gram so code can be generated in a more sophisticated

manner. For example, notice in assert-explainer that despite
length being a subexpression of length xs, its value is not

printed. During the process of code generation the constraint

solver is consulted in order to verify that each subexpression

can be printed.

Constructing terms In order to insert or modify a bind-

ing when writing a type checker plugin, it is necessary to

create a type checked term. A type checked expression is

of type LHsExpr GhcTc but constructing these directly can

be difficult as in particular you have to understand how the

constraint solver will generate evidence. It is easier to con-

struct an untyped representation of the term before passing

it to the normal type checking functions in order to create

the type checked expression.

In fact, there are several different representations of terms

to choose from, and it is worth understanding them:

LHsExpr GhcTc A type checked expression is difficult to con-

struct because the implicit evidence must be filled in.

LHsExpr GhcRn A renamed term has all references to names

resolved. It can then be type checked but the plugin author

must take care to make sure that their term is correctly

and unambiguously typed. Failure to do so will result in

an error when the plugin is run.

LHsExpr GhcPs A parsed term is very easy to construct as

it most closely resembles the languages source syntax.

References to names are not fully determined until the

plugin is run.

Exp Using Template Haskell quotations to construct terms

is a good compromise between ease and specificity. Terms

constructed in this way can still fail to type check but the

references of free variables are fixed. It is also convenient

to use quotations to construct terms as then you do not

have to use combinators to build the representations.

As an example, we will construct the term print () using
the Exp method. The term is first quoted using the quotation

brackets. At this point the reference to print is fixed so that

it refers to the same print as in scope in the module where

the plugin is defined.

https://github.com/ocharles/assert-explainer

Haskell ’19, August 22–23, 2019, Berlin, Germany Matthew Pickering, Nicolas Wu, and Boldizsár Németh

mkNewExprTh :: TcM (LHsExpr GhcTc)
mkNewExprTh = do
th_expr ← liftQ Jprint ()K
ps_expr ← case convertToHsExpr noSpan th_expr of

Left _err → error "Bad expression"

Right res → return res

io_tycon← tcLookupTyCon ioTyConName
let exp_type = mkTyConApp io_tycon [unitTy]
renameExpr ps_expr >>= typecheckExpr exp_type

liftQ :: Q a→ TcM a
liftQ = liftIO · runQ

After the quotation is run, the result is a LHsExpr GhcPs
which has to be renamed and type checked. In order to help

the type checker the result type of the whole expression is

synthesised, in this case IO (). By fixing a monomorphic

type as the result of the expression there are less likely to be

ambiguities during the type checking process. However, er-

rors can still occur if you try to type check something which

is type incorrect! It is up to the plugin author to construct a

correct term and handle errors which arise from calling TcM
actions. If they do not catch and handle the errors then they

are displayed directly to the user.

If the generated term is static, not dependent on the cur-

rent program context, then a good option is to bypass syntax

generation entirely by defining the function in an external

module and calling it by creating a reference to the variable.

Creating references to variables is discussed in Section 5.4.

Conversingwith the constraint solver In this plugin, only

subexpressions which have a type that is an instance of Show
should be displayed. In order to achieve this the constraint

solver has to be asked whether the type satisfies the con-

straint. This can be achieved from within a type checker

plugin.

The getDictionaryBindings function asks the constraint

solver if a constraint is satisfiable. There are two inputs, a

variable which will store the evidence information and the

constraint we want to solve (e.g. Show ()).

getDictionaryBindings ::
Var → Type → TcM (WantedConstraints, EvBindMap)

getDictionaryBindings dict_var dictTy = do
loc ← getCtLocM (GivenOrigin UnkSkol) Nothing
let nonC = mkNonCanonical CtWanted
{ctev_pred = dictTy
, ctev_nosh = WDeriv
, ctev_dest = EvVarDest dict_var
, ctev_loc = loc }
wCs = mkSimpleWC [cc_ev nonC]

runTcS (solveWanteds wCs)

getDictionaryBindings then constructs a CtWanted con-

straint [20] which is then asked to be solved by solveWanteds.

The return value of the whole function is the set of unsolved

constraints, which should hopefully be empty, and the evi-

dence generated by solving the constraints. This information

can be used to work out whether the constraint was soluable

or not.

4 Using Plugins
Now that the interface (Section 2) and the development of

plugins (Section 3) have been described, it is time to look at

how plugins can be invoked.

4.1 Invoking a Plugin
A plugin is invoked by passing a command line options to

the compiler.

-fplugin <module> Load the specified module as a plu-

gin and run it when compiling. Multiple plugins can be

enabled at the same time by passing multiple -fplugin
options. The plugins are run in the order of the arguments.

-fplugin-opt <string> Pass these options to the plugin

when it is run. Multiple -fplugin-opt options can be

passed. The value of each -fplugin-opt option is prefixed
with the name of the plugin receiving that option.

-plugin-package Use this package name in order to find

the plugin specified by -fplugin and any dependencies.

-plugin-package-id Use this package identifier (which is

a name pinned to a specific version) in order to find the

plugin specified by -fplugin.
-hide-all-plugin-packages By default, all packages that

are imported with -fpackage are available for a plugin to

use. This flag means that they can only use dependencies

specified by the package name with -fplugin-package
or by its identifier with -fplugin-package-id.

The interface is quite low level but users are not expected

to call these options themselves, just like they are not ex-

pected to pass other configuration flags to GHC themselves.

It is the domain of build tools to take a user’s high level

specification for a build and translate it into these primitives.

4.2 Nix Interface
None of the dedicated build tools for Haskell projects provide

first class support for adding and invoking plugins. However,

we have implemented a user interface for the Nix ecosystem

which uses the general purpose Nix package manager [5] to

build Haskell projects.
5
This is detailed here since it helps to

pinpoint the way in which plugins interact with the rest of

the system.

The Nix package manager already has comprehensive

support for building Haskell packages.
6
The extension allows

existing build instructions to be modified in order to also

enable plugins to be run during the package’s compilation.

5https://github.com/mpickering/haskell-nix-plugin
6https://nixos.org/nixpkgs/manual/#users-guide-to-the-haskell-
infrastructure

https://github.com/mpickering/haskell-nix-plugin
https://nixos.org/nixpkgs/manual/#users-guide-to-the-haskell-infrastructure
https://nixos.org/nixpkgs/manual/#users-guide-to-the-haskell-infrastructure

Working with Source Plugins Haskell ’19, August 22–23, 2019, Berlin, Germany

The behaviour of how a plugin can be applied to a module

is specified as a Nix attribute set which is a collection of the

following named fields:

pluginPackage The name of the Nix package in which the

plugin is defined.

pluginName The name of the module the plugin is defined

in. This is also used as the name of the output for the

plugin, as well as the parameter that names the plugin

passed to GHC.

pluginOpts A function which takes two arguments and

produces a list of options to pass to the plugin. The first

argument is a directory where the plugin can write its

output to. The second argument is the package that the

plugin is applied to.

There is a special output directory created for the plugin

to use. This directory is typically passed to the plugin as

an argument and it uses it to write intermediate results.

The package is also passed to this function so that the

plugin options can depend on metainformation about the

package. For example, you might want to pass the current

package name to a plugin. Some of this information is

also available from inspecting the compiler state using

the plugin but it is more straightforward to use the well-

structured information by inspecting the Haskell package.

pluginDepends Any additional system dependencies that

the plugin requires in addition to the normal Haskell de-

pendencies.

initPhase A shell script which runs before the module is

compiled. This is used for doing any initialisation that

the plugin requires to run successfully such as making

directories or initialising a database.

finalPhase A shell script which runs after the package has

been compiled. The individual outputs of running the

plugin on each module can be collated and rendered into

a format suitable for the user to consume.

As an example that uses most of these fields, here is the

specification of the graphmod plugin, that corresponds to

the graphModules type checker plugin (Section 1):

graphmod =
{ pluginPackage = hp.graphmod-plugin;

pluginName = "GraphMod";
pluginOpts = ({path,pkg}: ["${path}/output"]);
pluginDepends = [nixpkgs.graphviz];
finalPhase = {path,pkg}:

''graphmod-plugin --indir ${path}/output >
${path}/out.dot

cat ${path}/out.dot | tred | dot -Tpdf >
${path}/modules.pdf

''; } ;

The graphmod plugin is defined in code that has been bun-
dled into the hp.graphmod-plugin package, and the module

of the plugin definition is GraphMod.
Recall that the definition of graphModules takes a value

opts :: [CommandLineOption] as a parameter. This list is

populated with the information from the application of the

pluginOpts field. In this example the field should contain

the path where diagrams are output, and so pluginOpts
provides ["${path}/output"] as the argument.

The plugin uses graphviz to render its output, and so this
is added as a dependency in the pluginDepends field.

Finally, once the package has been compiled the script

contained in the finalPhase field is executed. In this case

the graph is be rendered using tred and dot, which are

provided by the graphviz package.

The graphmod package is now ready to be applied to a par-

ticular package. For instance, here is the invocation required

to trace out the dependencies of the either package:
eitherWithPlugin =

addPlugin graphmod haskellPackages.either

By building eitherWithPlugin, the generated graph for the

eitherHaskell packagewill be contained in an attribute called
eitherWithPlugin.GraphMod.

Using a whole system package manager such as Nix makes

it easy to configure a plugin that interacts with both system

tools as well as Haskell packages. The combination is a com-

mon feature of plugins that perform code analysis.

5 Tips and Tricks
In our experience of implementing plugins we’ve also had

to solve lots of other small problems. In this section we cata-

logue a selection of other small problems and their solutions.

5.1 Combining Together Old and New Syntax
Combining existing subexpressions in order to create a big-

ger program is not straightforward to achieve directly. If you

make new syntax using quotation brackets in the manner

described in Section 3.3 then you will still want to insert

LHsExpr GhcTc expressions into the syntax tree.

The easiest way to achieve this is to construct a function

which can be then applied to the existing expressions. For

each place where you want to insert a subexpression cre-

ate a new variable, abstract over all these occurences and

then finally apply the expression after conversion to the

LHsExpr GhcTc arguments.

For example, consider a plugin which replaces 2 ∗ e with
e + e. Suppose that after syntax analysis e :: LHsExpr GhcTc,
first construct a closed Template Haskell term Jλe′ → e′+e′K,
convert the representation to a LHsExpr GhcTc and finally

apply the function to e. The resulting term is (λe′ → e′+e′) e
which is equivalent to e + e.

5.2 Finding the Type of an Expression
When writing a type checker plugin it is common to want

to know the type of a certain subexpression. At the time

of writing, the type can not be computed directly from the

LHsExpr GhcTc. However, by observing that the type of an

Haskell ’19, August 22–23, 2019, Berlin, Germany Matthew Pickering, Nicolas Wu, and Boldizsár Németh

expression should remain invariant after desugaring the type

can be computed from the desugared term.

getType :: LHsExpr GhcTc → TcM (Maybe Type)
getType = do
hs_env ← getTopEnv
(,mbe) ← liftIO (deSugarExpr hs_env e)
return (exprType ⟨$⟩mbe)

5.3 Reporting Errors
In assert-explainer we also want to warn a user, at compile-

time, if there are no sub-expressions at all which can be

displayed. This indicates that they won’t get any useful di-

agnostics when the assertion fails.

The normal TcM functions can be used to display the error

to the user in a way uniform to other compiler errors.

For example, by using the functions setSrcSpan, addErrCtxt ,
and failWithTc, we can create errors which will get reported

in the same way as a normal compiler error when the plugin

has finished executing.

makeError :: LHsExpr GhcTc → TcM ()

makeError (L l e) =
setSrcSpan l $
addErrCtxt (text "In" ⟨+⟩ ppr e) $

failWithTc "Error!"

5.4 Specifying Names
When specifying what names we mean, it is important to

understand the context in which different name mechanisms

work in. Renamer functions which operate in the TcMmonad

will be executed when the plugin runs, in the context of the

user’s program so it will only find names that the user has

brought into scope in that module. In order to properly per-

sist names the resolution of the name should be determined

in the module the plugin is defined in.

For example, constructing theOccName for the identifier f
if you use the lookupTopBndrRn function in order to resolve

its name in a source plugin then this function will be run

when the plugin is executed and the lookup will only succeed

if the user has an identifier named f in global scope.

On the other hand, if the Template Haskell name quota-

tion mechanism is used by referring to the name as
′′f and

then converting it to a Name using a combination of vName
and isExact_maybe, then the Name will refer to an f that is

currently in scope in the module defining the plugin. This

persists names unambiguously to the generated syntax.

The idioms-plugin could have used the quotation mech-

anism to fix references to the definitions of pure and ⟨∗⟩

defined in the Control.Applicative module.

5.5 Communicating Between Phases
Plugins operate one phase at a time and one module at a

time. The API provides no functions to natively propagate

state between the phases. Each plugin must decide how it

serialises and communicates information between its invo-

cations. Plugins can communicate between each phase by

using a global mutable reference to store state and between

invocations by writing interface files.

Communication by mutable variables If two different

phases need to communicate between themselves, for exam-

ple, a renamer plugin communicating with a type checker

plugin, then a mutable variable such as an IORef can be used

to store information between the phases.

A global IORef can be created by using unsafePerformIO.
It is important to mark the variable with a NOINLINE pragma

so that the variable isn’t inlined and duplicated.

var :: IORef Int
var = unsafePerformIO $ newIORef 0

{-# NOINLINE var #-}

The variable will only be initialised once when the plugins

are first loaded into the session. Information written to the

variable is persisted across the phases so changes to the

variable made by a renamer plugin are available in a type

checker plugin.

Communication by serialisation In the common situa-

tion that a plugin needs to communicate between different

modules, the plugin author is expected to serialise the infor-

mation which needs to be communicated to some form of

persistent storage.

A common design is for the plugin to take the output

directory as an argument and create a serialisation of its

work to place into the directory. The module name and unit

identifier can be used to make a unique filename which can

be accessed by another invocation of the plugin or after the

plugin has finished processing all the modules.

This design fits into how GHC supports separate compila-

tion by writing interface files to communication information

about already compiled modules.

6 Other Plugin Examples
The plugin system provides a comprehensive means of in-

teracting with GHC, and so there is a huge variety of possi-

bilities for different plugins.

In order to motivate source plugins we will first describe

some plugins which have already been implemented but

without going into too many technical details.

6.1 lift-plugin
The purpose of the lift-plugin7 is to augment how the Lift
type class from template-haskell works.

7https://github.com/mpickering/lift-plugin

https://github.com/mpickering/lift-plugin

Working with Source Plugins Haskell ’19, August 22–23, 2019, Berlin, Germany

class Lift a where
lift :: a→ Q Exp

The lift :: a→ Q Exp function is used to turn a value into its

Template Haskell representation. lift is implemented for base

types such as Int , Bool, () and so on, as well as compound

types such as tuples and lists. Any value which can be repre-

sented in the Template Haskell AST by copying can be made

an instance of Lift . The notable exception to Lift is that func-

tions are not liftable. This means that at runtime there is no

general method to convert a function to its representation.

When using quotations, top-level definitions can be per-

sisted due to their top-level nature. JidK is the representation
of id , which stores the path to the top-level position where

id is defined.

The goal of the lift-plugin is to remove this restriction

for top-level functions so that if lift is directly applied to a

top-level function then it will work as though there was a

Lift instance for functions. For example, lift id should result

in the representation for id .
It is substantially harder to implement plugins which need

to change how a program is type checked. The only mecha-

nism which can be used to recovered from type errors is a

constraint solver plugin. Unsolved constraints can be inter-

cepted and solved in this plugin but with the current interface

recovering from normal type errors is impossible. A type

checker plugin will only be run if the program is already

type correct.

This means that if the plugin should fix a type error then

the type error must be manifested as a failure to solve a

constraint and then that should be fixed in the constraint

solver. However, when solving these constraints not enough

contextual information about how they arose is available to

implement this plugin. In particular, the fact the Lift con-

straint arose from an application to id . Therefore, the con-
straint solver delays the decision about solving before a type

checker plugin actually provides the evidence and finally a

core plugin verifies that no unsolved constraints remain in

the program. Type errors are reported in a natural manner

to users by being persisted from the constraint solver plugin

(Section 7.3) to the core plugin using a global variable.

6.2 smuggler
The smuggler8 plugin automatically rewrites a user’s import

list to add missing imports. Analysis is performed as a type

checker plugin to find the minimal set of imports, the source

file is then rewritten in-place to replace the import list with

the computed set. This means that when used in conjunction

with automatic reloading that referencing a new definition

will automatically add the import to your file.

This level of self-modification raises some questions about

recompilation avoidance and the safety of writing over a

user’s source file. When the plugin modifies the user’s source

8https://github.com/kowainik/smuggler

file then next time the module is compiled then the recompi-

lation checker will observe that the source file has changed

and reinvoke the plugin. However, the plugin has to observe

that it doesn’t need to modify the file again as if it writes

to the file then the modification time of the file will change

and GHC’s own recompilation check will recompile the file

causing an infinite loop.

The plugin authors took their own steps to avoid this prob-

lem by recording a hash of the input file and not processing

the file if it was unchanged. Another option would be to

modify GHC’s recompilation checker to itself be based on a

hash of the file’s contents rather than the modification time.

6.3 Haskell by Contracts
Design by Contract [12] is an approach to designing soft-

ware. It uses preconditions, postconditions and invariants to

verify the interactions between software components. Con-

tracts can be introduced into functional programming by

performing certain checks before and after evaluating cer-

tain definitions [7].

Directly inserting the checks into the program code leads

to cluttering the business logic of the application, mixing

specification and implementation. A better way is to add

these to the program representation after the program has

been analysed by the compiler.

The contracts can be added as annotations to the compo-

nents they are specifying. GHC annotations can be accessed

during the compile process. It is possible to add the checks

using Template Haskell, but compiler plugins have complete

freedomwhen operating on the program representation. The

transformation can be performed after either the parse or

type check phase, each having different advantages and dis-

advantages. In the parse phase modifying the syntax tree is

easier, as it is simpler, but in the later stages with more infor-

mation it is easier to interpret the annotations that control

the transformation. Previous proposals [3, 21] to integrate

contracts into Haskell could have been prototyped using

source plugins.

6.4 what-it-do
what-it-do9 is another debugging plugin implemented by

Ollie Charles. It takes a do-expression and rewrites each line

to trace the result of evaluating the line. In a similar way to

the assert-explainer plugin described in Section 3 it interacts

with the constraint solver to check whether each value can

be rendered or not.

9https://github.com/ocharles/what-it-do

https://github.com/kowainik/smuggler
https://github.com/ocharles/what-it-do

Haskell ’19, August 22–23, 2019, Berlin, Germany Matthew Pickering, Nicolas Wu, and Boldizsár Németh

6.5 kleene-type
Oleg Grenrus also implemented a parser plugin in the style

of the idioms-plugin (Section 3.2) for constructing heteroge-

nous lists.
10
The plugin steals the syntax for a nested single-

ton list and converts it to use the heterogenous cons operator.

For example: [[’a’, 1, True, ()]] :: HList [Char , Int ,Bool, ()]
The plugin is used in conjunction with a constraint solver

plugin in order to implement support for specifying types

(of heterogenous sequences) by using regular expressions.

6.6 detect-unquantified-tyvars
Thomas Winant demonstrates that plugins are useful for

implementing custom warnings in the compiler. The detect-
unqualified-tyvars plugin11 raises a warning if any type vari-
able is implicitly quantified. By using GHC’s own error re-

porting functions the error messages integrate seamlessly.

7 Interactions
There are already a lot of different ways to extend GHC.

In this section we will give an overview of these different

methods, how they compare to source plugins and why you

might want to use one rather than another.

7.1 Hooks
The hooks interface is a similar mechanism to modify parts

of the GHC compilation pipeline. Using hooks differs from

source plugins in two significant ways:

• Hooks have to be defined using the GHC API.

• Hooks replace an entire phase rather than running in ad-

dition to the normal compiler pipeline.

Source plugins are enabled by the command line but in order

to use hooks one must write an executable which replicates

the frontend of the compiler. In practice history has showed

us that writing programs which emulate GHC’s frontend is

surprisingly hard to get right.

A hook replaces an entire phase, which is more powerful

than a source plugin which operates in addition to normal

compilation. This makes a hook harder to write as you often

want to keep the core functionality of a program the same but

with one small difference.Whenwriting hooks it is necessary

to carefully inspect the original definition to make sure that

you reimplement the functionality in a faithful manner.

The hooks interface is somewhat ad-hoc as it was moti-

vated by the needs of GHCJS, which modifies parts of the

backend of the compiler to generate Javascript. This means

that the interface is focused on specific parts of the backend

such as how linking is performed, how Template Haskell

splices are run, and how foreign imports are interpreted.

10https://github.com/phadej/kleene-type
11https://github.com/mrBliss/detect-unquantified-tyvars

7.2 Safe Haskell
Safe Haskell [19] is a mechanism which aims to warn users

about potentially unsafe interactions by using unsafe lan-

guage features. A module is either marked as Safe, Unsafe
or Trustworthy .
Unfortunately, Safe Haskell and source plugins do not

always play nicely. A source plugin can modify the user’s

source file in any way the plugin author desires, so this

means that in order to be conservative any module compiled

using a source plugin should be marked Unsafe. There are
many source plugins that act in a completely safe manner

but due to the unrestricted nature there is no way to analyse

whether a plugin does anything to compromise safety.

This restriction causes practical problems when trying to

run a plugin on dependencies which declare Safe Haskell

properties. For instance, a module which is marked as Safe
can’t import any Unsafe modules. Running a plugin on the

entire dependency tree marks are modules as Unsafe which
means that the Safe Haskell check fails and compilation

of the dependency fails. This issue also arises when other

consumers (such as Haddock) inspect and render the Safe

Haskell mode of a module.

The solution which we have implemented to this problem

is to allow the invoker of the plugin to specify an additional

command line flag which turns off the Safe Haskell check

for a module.

-fno-safe-haskell Ignore any declared safety property of

a module

The flag was preferred to allowing plugin authors to de-

clare the safety of a module themselves because Safe Haskell

is designed to be conservative.

7.3 Constraint Solver Plugins
A constraint solver plugin [8] allows developers to augment

the constraint solver with custom solving logic. A plugin is

asked if it can solve any residual constraints leftover after the

normal constraint solving process has finished. The plugin

can solve these constraints by providing evidence or emit

further constraints to be solved.

Constraint solver plugins are the only plugin mechanism

which allows type errors to be recovered from. This means

that if youwant tomake a program type checkwhichwouldn’t

otherwise the failure needs to be in the form of a insoluable

constraint. This constraint can then be intercepted in the

constraint solver plugin and solved rather than reporting the

error to the user.

Other plugin phases such as renamer plugins or a parser

plugin can pre-emptively fix type errors but in order to do

this they must implement their own type checking algorithm.

A more common method is to introduce terms in a renamer

plugin which will certainly cause a type error which can be

recovered from in the constraint solver plugin.

https://github.com/phadej/kleene-type
https://github.com/mrBliss/detect-unquantified-tyvars

Working with Source Plugins Haskell ’19, August 22–23, 2019, Berlin, Germany

7.4 Core Plugins
Source plugins are implemented using the same machinery

as core plugins. The difference is that the source plugins

operate during the frontend of the compiler whilst the rep-

resentation still closely resembles the source language.

Core plugins operate on the intermediate representation

after the source program is desugared. Core plugins can

implement new optimisation passes or other analysis of core

programs but reflecting these changes back to the user is

challenging as the provenance of a core expression is not

precise and lost by program transformation.

Core plugins have not seen wide-spread adoption in the

community despite being implemented in 2011. Tomy knowl-

edge there are no commonly used plugins which implement

domain specific optimisation passes or the like. The most

commonly used core plugin is inspection-testing [2] which

verifies properties about the compilation of a program.

Source plugins are easier to conceptualise than a core

plugin as ordinary users are familar with the source language

and source language features. Core plugins on the other hand

rely on knowing how the optimiser works and specifics of

the internal representation.

7.5 Frontend Plugins
Frontend plugins

12
are intended to be used by tool authors

in order to replicate the precise session that GHC uses to

compile a module.

The idea is that the frontend plugin replaces the whole

compiler apart from the flag parsing and target loading logic.

From there, a plugin author can do whatever they like with

the environment to perform their analysis. The design has

three problems which source plugins attempt to resolve.

1. The plugin author has to reimplement much of the com-

piler pipeline if they want to type check a module.

2. It is not possible to use multiple frontend plugins together

with each other.

3. The plugin has to be run seperately to the normal com-

pilation process so every module is compiled twice, once

for normal compilation and once for the plugin.

It is common for a tooling author to want to extract some-

thing specific from the compiler but with a frontend plugin

you have to replicate all the compilation logic yourself by

copying functions defined in the compiler. The advantage

of a source plugin is that you are presented with the type

checked module and then just have to perform the analysis

to find out the information you need.

Projects which require a great deal of control over the

compilation process such as GHCJS
13

and Asterius
14

are

12https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
extending_ghc.html#frontend-plugins
13https://github.com/ghcjs/ghcjs
14https://github.com/tweag/asterius

suitable for frontend plugins but for general tooling they are

not appropiate.

8 Related Work
In this section we reflect how source plugins are different

to other metaprogramming facilities implemented in GHC

and other methods of compiler extension in other typed

functional programming languages.

8.1 Template Haskell
Template Haskell [18] provides a more convenient and hy-

gienic API for compositionally generating programs. Syntax

can be created by quoting Haskell terms and then inspected

and modified by manipulating abstract syntax trees.

In comparision to source plugins, inspecting the defini-

tions of everything in a module is not possible. Syntax is usu-

ally generated using combinators, precise control over the

final generated code is hard as the syntax tree corresponds

quite closely to source programs. Limited type-directed syn-

thesis is available by calling special functions implemented in

the Q monad, for example, the type of a variable can be con-

sulted and whether a type satisfies certain instances. Finally,

invoking Template Haskell is quite syntactically restrictive.

There is no means to abstract over the splice operator.

At the other end of the spectrum, Typed Template Haskell

ensures a hygienic program generation, although this comes

at the expense of introspection.

8.2 Deriving Mechanisms
Type class deriving is a convenient and automatic metapro-

gramming facility where type class definitions can be me-

chanically derived from the structure of a data type.

There are a number of different deriving strategies which

are built into the compiler. For example the stock deriving

strategy uses logic built into the compiler to derive classes

such as Eq and Ord . anyclass uses default implementations,

via dervives a class via a representationally equal data type

which already implements the class [1] and so on. One part

missing from the deriving arsenal is a way for users to take

precise control over how a type class should be derived with

their own strategy.

A new type class deriving strategy could be implemented

with a source plugin with these steps:

1. Define a new class that you want to derive by using a

class definition.

2. In a renamer plugin remove the class from the deriving

clause of the data type.

3. In a type checker plugin generate a class definition due

to your deriving strategy.

This implementation strategy relies on the knowledge that

type class instances are derived after type checking. This is

necessary because the class definition must be well formed

before the instances can be derived from it. Removing the

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/extending_ghc.html#frontend-plugins
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/extending_ghc.html#frontend-plugins
https://github.com/ghcjs/ghcjs
https://github.com/tweag/asterius

Haskell ’19, August 22–23, 2019, Berlin, Germany Matthew Pickering, Nicolas Wu, and Boldizsár Németh

class from the deriving clause means that GHC will not try

to derive the class itself and raise an error. This means the

decision about whether to derive a class needs to be commu-

nicated using one of the techniques discussed in Section 5.5.

8.3 Elaborator Reflection
Elaborator reflection [4] is the name given to a family of

techniques which expose the internal implementation of the

compiler to the user so they can generate terms in a manner

similar to the compiler. Elaborator reflection is implemented

in Idris and Agda.

In Idris, users write functions of type Elab () which de-

scribe how to construct a term. For example, the mkId ::

Elab () script will construct an identity function taking into

account its context. Syntax is also added to the language

which allows elaboration scripts to be run.

idNat :: Nat → Nat
idNat = %runElab mkId

The construct%runElab is similar in operation to the splice.

Its result is evaluated and the resulting term inserted into

the program.

The interface that GHC implementers use to construct

terms is not similar to the method implemented in elabora-

tor reflection. It is a low-level combinator based approach.

We conjecture that a tactics based approach could be imple-

mented as a library and run inside the TcMmonad to provide

a similar interface.

8.4 Scala Plugins
The most closely related plugin mechanism is the Scala plu-

gin system. They operate under the same principle as source

plugins. Users define transformation passes which work on

the compilers internal representation.

One interesting feature is that the user specifies when

a plugin should run relative to other compiler phases [14].

This yields a set of constraints which is linearised by the

compiler in order to find the correct order to run the plugins.

This approach is only possible because the internal AST

representation in scala is untyped. All plugins have a uniform

type but rely on additional information being present after

certain phases of the compilation.

It’s interesting to see what kinds of plugins scala authors

have implemented as many of them could also work for

Haskell programs. Several linting tools such asWartRemover15

and Scalafix16 are implemented as plugins. This is in con-

trast to Haskell where linters have been implemented using

libraries such as haskell-src-exts. Analysis tools to detect

module cycles
17
and a projects dependency structure

18
are

15http://www.wartremover.org/
16https://scalacenter.github.io/scalafix/
17https://github.com/lihaoyi/acyclic
18https://github.com/lightbend/scala-sculpt

also popular. More experimental plugins extend the language

with syntax for type lambdas
19
and mutual recursion

20
.

Dotty (Scala 3) will also support compiler plugins.

8.5 C# Roslyn Analyzers
The Roslyn compiler for C# has a sophisticated plugin mech-

anism which makes implementing custom diagnostic passes

straightforward. The motivation and implemenentation is

geared around reporting the diagnostics back to the user

rather than external analysis or modification. The extension

points are a lot more fine grained, most internal functions

can be extended in the definition of an analyzer.
2122

Developers can include custom analyzers in their library

definitions which makes the integration and utilisation of

plugins transparent to end users.

9 Historical Remarks
The authors have learnt from many others about how to

write different styles of plugins over the years so it would

be amiss to neglect to mention the contributions of others

to this cause. The development of plugins was started by

Max Bolingbroke and Austin Seipp in 2008. The first version

of GHC to support core plugins was 7.2.1
23
which was re-

leased in 2011. Since then the adoption of core plugins has

been quite slow but there are several notable examples. El-

liott [6] implements automatic syntax overloading, Breitner

[2] checks properties of compiled programs and Izbicki
24

integrates Herbie [16] into GHC. Gundry [8] fulfilled the

OutsideIn(X) [20] prophecy by allowing users to write plu-

gins to extend the constraint solver. Diatchki
25
and Baaij

26

implement solvers to solve type-level aritemetic. Baaij has

also written useful tutorials about constructing constraint

solver plugins
2728

. Frisby
29
implemented row types and Ot-

wani and Eisenberg [15] solve a constraint DSL using Z3.

The idea for source plugins has been floated several times,

initially by Edsko de Vries
30
and then completed five years

19https://github.com/typelevel/kind-projector
20https://github.com/wheaties/TwoTails
21https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/
how-to-write-csharp-analyzer-code-fix
22https://docs.microsoft.com/en-us/visualstudio/extensibility/getting-
started-with-roslyn-analyzers?view=vs-2017
23https://downloads.haskell.org/~ghc/7.2.1/docs/html/users_guide/
release-7-2-1.html
24https://github.com/mikeizbicki/HerbiePlugin
25https://github.com/yav/type-nat-solver
26https://github.com/clash-lang/ghc-typelits-extra
27https://qbaylogic.com/blog/2016/08/10/solving-knownnat-constraints-
plugin.html
28https://qbaylogic.com/blog/2016/08/17/solving-knownnat-custom-
operations.html
29https://github.com/nfrisby/coxswain
30https://mail.haskell.org/pipermail/ghc-devs/2013-June/001377.html

http://www.wartremover.org/
https://scalacenter.github.io/scalafix/
https://github.com/lihaoyi/acyclic
https://github.com/lightbend/scala-sculpt
https://github.com/typelevel/kind-projector
https://github.com/wheaties/TwoTails
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/tutorials/how-to-write-csharp-analyzer-code-fix
https://docs.microsoft.com/en-us/visualstudio/extensibility/getting-started-with-roslyn-analyzers?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/extensibility/getting-started-with-roslyn-analyzers?view=vs-2017
https://downloads.haskell.org/~ghc/7.2.1/docs/html/users_guide/release-7-2-1.html
https://downloads.haskell.org/~ghc/7.2.1/docs/html/users_guide/release-7-2-1.html
https://github.com/mikeizbicki/HerbiePlugin
https://github.com/yav/type-nat-solver
https://github.com/clash-lang/ghc-typelits-extra
https://qbaylogic.com/blog/2016/08/10/solving-knownnat-constraints-plugin.html
https://qbaylogic.com/blog/2016/08/10/solving-knownnat-constraints-plugin.html
https://qbaylogic.com/blog/2016/08/17/solving-knownnat-custom-operations.html
https://qbaylogic.com/blog/2016/08/17/solving-knownnat-custom-operations.html
https://github.com/nfrisby/coxswain
https://mail.haskell.org/pipermail/ghc-devs/2013-June/001377.html

Working with Source Plugins Haskell ’19, August 22–23, 2019, Berlin, Germany

later by Németh [13]. Pickering [17] made further improve-

ments to the recompilation API; then implemented by Pick-

ering but with significant help from Baaij. Charles
3132

, Ko-

vanikov and Romashkina
33
, and Grenrus

3435
have been early

adopters and their feedback in developing source plugins

has led to further improvements and ideas for this paper.

10 Conclusion
Source plugins are an extremely powerful and flexible mech-

anism for interacting with GHC. The goal of this paper is

to make this work accessible to the masses by providing a

detailed overview of the system and its possibilities.

The interface for working with source plugins allows pro-

grammers to interact with the GHC compilation pipeline

through a series of extension points, and modify results as

necessary. This plugin system provides a comprehensive

means of interacting with the compiler, making it possible

to write a wide variety of plugins for different purposes.

Acknowledgments
We thank Csongor Kiss and Jamie Willis for comments on

earlier drafts. This work has been supported by EPSRC grant

number EP/S028129/1 on “SCOPE: Scoped Contextual Oper-

ations and Effects”.

References
[1] Baldur Blöndal, Andres Löh, and Ryan Scott. 2018. Deriving Via: or,

How to Turn Hand-Written Instances into an Anti-Pattern. SIGPLAN
Not. 53, 7 (Sept. 2018), 55–67. https://doi.org/10.1145/3299711.3242746

[2] Joachim Breitner. 2018. A Promise Checked is a Promise Kept: Inspec-

tion Testing. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell (Haskell 2018). ACM, New York, NY, USA, 14–25.

https://doi.org/10.1145/3242744.3242748
[3] Olaf Chitil. 2012. Practical Typed Lazy Contracts. In Proceedings

of the 17th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’12). ACM, New York, NY, USA, 67–76. https:
//doi.org/10.1145/2364527.2364539

[4] David Christiansen and Edwin Brady. 2016. Elaborator Reflection:

Extending Idris in Idris. In Proceedings of the 21st ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP 2016). ACM, New

York, NY, USA, 284–297. https://doi.org/10.1145/2951913.2951932
[5] Eelco Dolstra. 2006. The purely functional software deployment model.

Utrecht University.

[6] Conal Elliott. 2017. Compiling to Categories. Proc. ACM Program.
Lang. 1, ICFP, Article 27 (Aug. 2017), 27 pages. https://doi.org/10.

31https://github.com/ocharles/assert-explainer
32https://github.com/ocharles/what-it-do
33https://github.com/kowainik/smuggler
34https://github.com/phadej/idioms-plugins
35https://github.com/phadej/kleene-type

1145/3110271
[7] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for

Higher-order Functions. In Proceedings of the Seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP ’02). ACM,

New York, NY, USA, 48–59. https://doi.org/10.1145/581478.581484
[8] Adam Gundry. 2015. A Typechecker Plugin for Units of Measure:

Domain-specific Constraint Solving in GHC Haskell. SIGPLAN Not.
50, 12 (Aug. 2015), 11–22. https://doi.org/10.1145/2887747.2804305

[9] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A

Practical Design Pattern for Generic Programming. In Proceedings of
the 2003 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation (TLDI ’03). ACM, New York, NY, USA,

26–37. https://doi.org/10.1145/604174.604179
[10] Simon Marlow and Simon Peyton Jones. 2012. The Glasgow Haskell

Compiler. In The Architecture of Open Source Applications, Amy Brown

and Greg Wilson (Eds.). Chapter 5. https://www.aosabook.org/en/ghc.
html

[11] Conor McBride and Ross Paterson. 2008. Applicative Programming

with Effects. Journal of Functional Programming 18, 1 (2008), 1âĂŞ13.

https://doi.org/10.1017/S0956796807006326
[12] Bertrand Meyer. 1992. Eiffel: The Language. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA.

[13] Boldizsár Németh. 2018. Source Plugins. GHC proposal. https:
//github.com/ghc-proposals/ghc-proposals/pull/209

[14] Anders Bach Nielsen. 2008. Scala Compiler Phase and Plug-In Initial-

ization for Scala 2.8. https://www.scala-lang.org/old/sid/2
[15] Divesh Otwani and Richard A. Eisenberg. 2018. The Thoralf Plugin:

For Your Fancy Type Needs. In Proceedings of the 11th ACM SIGPLAN
International Symposium on Haskell (Haskell 2018). ACM, New York,

NY, USA, 106–118. https://doi.org/10.1145/3242744.3242754
[16] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary

Tatlock. 2015. Automatically Improving Accuracy for Floating Point

Expressions. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15). ACM,

New York, NY, USA, 1–11. https://doi.org/10.1145/2737924.2737959
[17] Matthew Pickering. 2018. Refining the Plugin Recompilation API. GHC

Proposal. https://github.com/ghc-proposals/ghc-proposals/pull/108
[18] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-

programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell (Haskell ’02). ACM, New York, NY, USA, 1–16.

https://doi.org/10.1145/581690.581691
[19] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières.

2012. Safe Haskell. In Proceedings of the 2012 Haskell Symposium
(Haskell ’12). ACM, New York, NY, USA, 137–148. https://doi.org/10.
1145/2364506.2364524

[20] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin

Sulzmann. 2011. OutsideIn(X) Modular Type Inference with Local

Assumptions. J. Funct. Program. 21, 4-5 (Sept. 2011), 333–412. https:
//doi.org/10.1017/S0956796811000098

[21] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static

Contract Checking for Haskell. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’09). ACM, New York, NY, USA, 41–52. https://doi.org/10.1145/
1480881.1480889

https://doi.org/10.1145/3299711.3242746
https://doi.org/10.1145/3242744.3242748
https://doi.org/10.1145/2364527.2364539
https://doi.org/10.1145/2364527.2364539
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/3110271
https://doi.org/10.1145/3110271
https://github.com/ocharles/assert-explainer
https://doi.org/10.1145/3110271
https://github.com/ocharles/what-it-do
https://doi.org/10.1145/3110271
https://github.com/kowainik/smuggler
https://doi.org/10.1145/3110271
https://github.com/phadej/idioms-plugins
https://doi.org/10.1145/3110271
https://github.com/phadej/kleene-type
https://doi.org/10.1145/3110271
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/2887747.2804305
https://doi.org/10.1145/604174.604179
https://www.aosabook.org/en/ghc.html
https://www.aosabook.org/en/ghc.html
https://doi.org/10.1017/S0956796807006326
https://github.com/ghc-proposals/ghc-proposals/pull/209
https://github.com/ghc-proposals/ghc-proposals/pull/209
https://www.scala-lang.org/old/sid/2
https://doi.org/10.1145/3242744.3242754
https://doi.org/10.1145/2737924.2737959
https://github.com/ghc-proposals/ghc-proposals/pull/108
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/1480881.1480889
https://doi.org/10.1145/1480881.1480889

	Abstract
	1 Introduction
	2 Plugin Interface
	2.1 Extension Points
	2.2 Controlling Recompilation

	3 Plugin Development
	3.1 haskell-indexer
	3.2 Idioms Plugin
	3.3 assert-explainer

	4 Using Plugins
	4.1 Invoking a Plugin
	4.2 Nix Interface

	5 Tips and Tricks
	5.1 Combining Together Old and New Syntax
	5.2 Finding the Type of an Expression
	5.3 Reporting Errors
	5.4 Specifying Names
	5.5 Communicating Between Phases

	6 Other Plugin Examples
	6.1 lift-plugin
	6.2 smuggler
	6.3 Haskell by Contracts
	6.4 what-it-do
	6.5 kleene-type
	6.6 detect-unquantified-tyvars

	7 Interactions
	7.1 Hooks
	7.2 Safe Haskell
	7.3 Constraint Solver Plugins
	7.4 Core Plugins
	7.5 Frontend Plugins

	8 Related Work
	8.1 Template Haskell
	8.2 Deriving Mechanisms
	8.3 Elaborator Reflection
	8.4 Scala Plugins
	8.5 C# Roslyn Analyzers

	9 Historical Remarks
	10 Conclusion
	Acknowledgments
	References

