Staged Selective Parser Combinators

JAMIE WILLIS, Imperial College London, United Kingdom
NICOLAS WU, Imperial College London, United Kingdom
MATTHEW PICKERING, University of Bristol, United Kingdom

Parser combinators are a middle ground between the fine control of hand-rolled parsers and the high-level
almost grammar-like appearance of parsers created via parser generators. They also promote a cleaner, com-
positional design for parsers. Historically, however, they cannot match the performance of their counterparts.

This paper describes how to compile parser combinators into parsers of hand-written quality. This is done
by leveraging the static information present in the grammar by representing it as a tree. However, in order to
exploit this information, it will be necessary to drop support for monadic computation since this generates
dynamic structure. Selective functors can help recover lost functionality in the absence of monads, and the
parser tree can be partially evaluated with staging. This is implemented in a library called Parsley.

CCS Concepts: » Software and its engineering — Functional languages; Parsers.
Additional Key Words and Phrases: parsers, combinators, meta-programming

ACM Reference Format:
Jamie Willis, Nicolas Wu, and Matthew Pickering. 2020. Staged Selective Parser Combinators. Proc. ACM
Program. Lang. 4, ICFP, Article 120 (August 2020), 30 pages. https://doi.org/10.1145/3409002

1 INTRODUCTION

For functional programmers, parser combinators provide a clean and flexible approach to construct-
ing parsers. Whilst parser generator libraries are often capable of embedding host language code
into the grammar [Gill and Marlow 1995], parser combinators use the host language to construct
the grammar itself using higher-order combinators [Hutton 1992; Swierstra 2009; Swierstra and
Duponcheel 1996; Wadler 1985]. Unlike hand-written recursive descent parsers [Aho et al. 2006],
parser combinators are easier to reason about and maintain. Traditionally, parser combinator
libraries are monadic [Hutton and Meijer 1996; Leijen and Meijer 2001]* which gives them the
power to perform context-sensitive parsing, for example, reading non-keyword identifiers:

ident :: Parser String
ident = some (oneOf['a' .. 'z"]) »= (Axs — if isKeyword xs then empty else pure xs)

This parser first uses oneOf to read an alphabetical character, and greedily repeats it one or
more times with some. Then (»=) (pronounced “bind”) is used to give the letters the name xs and
proceeds to verify if xs is a keyword or not: if it is then fail, otherwise return xs. Input is consumed
without implicit backtracking. This has abstracted a lot of the parsing machinery away from the
programmer but has a cost: as well as executing the combinators themselves it is necessary to

! Other members of the parsec family such as megaparsec and attoparsec are also monadic

Authors’ addresses: Jamie Willis, Imperial College London, United Kingdom, j.willis19@imperial.ac.uk; Nicolas Wu, Imperial
College London, United Kingdom, n.wu@imperial.ac.uk; Matthew Pickering, University of Bristol, United Kingdom, matthew.
pickering@bristol.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART120
https://doi.org/10.1145/3409002

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020. 120

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3409002
https://doi.org/10.1145/3409002

120:2 Jamie Willis, Nicolas Wu, and Matthew Pickering

execute the functions that build them, often repeatedly. This is the main disadvantage of parser
combinators: the job of writing the parser is straightforward but results in a lot of extra interpretive
overhead. As we show, the interpretive overhead can be removed at compile time by static analysis.
The catch is that the dynamic structure generated by the (»=) renders static-analysis impossible!

The problem is that functions are generally not inspectable. As such a static analyser treats all
functions as black boxes: for some abstract f, the result of p »=f is only known once p has been
executed at runtime: static analysis is unable to analyse anything that happens past a (»=).

One way of recovering static analysis is by removing monadicity and falling back on applicative
functors [McBride and Paterson 2008], where parsers always have a purely static structure. However,
it is no longer possible to write the ident parser above. Instead, there must exist some form of
filtering combinator that provides static structure with dynamic runtime characteristics:

filteredBy :: Parser a — (a — Bool) — Parsera (»=) :: Parser a — (a — Parser b) — Parserb

The result of p “filteredBy" f is the value x parsed by p if f x holds true and failure otherwise.
This has a static structure: the analyser will know that filteredBy either returns some value, or fails,
but not which branch is executed. In contrast, the type of (»=) allows for unrestricted generation of
structure depending on the result of p. The ident parser can now be rewritten:

ident = some (oneOf['a'..'z"]) *filteredBy" (not - isKeyword)
This is both more concise and more easily optimised than the monadic version.

As we will see moving forward, the secret to implementing the filter combinator and other static
behaviours with dynamic choices is to restrict our power to selective functors [Mokhov et al. 2019].

This will give us access to some control-flow constructs, but still permit the static analysis needed
to compile away all of the abstraction and overhead.

Combinator High-level Abstract Low-level Compilation
Tree optimiser Machine optimiser via staging
Section 3 Section 3.1 Section 4.1 Section 4.2 Section 5

Fig. 1. Parsley’s Compilation Pipeline

This paper exploits static analysis and information by compiling combinators to optimised code;
this is achieved by a compilation pipeline (Figure 1) that performs optimisation passes before
compilation via a final staged interpreter. The combinators are smart-constructors for the nodes
of an abstract syntax tree (AST) called the combinator tree: on this representation high-level
grammar optimisations and analysis can be performed. Then, the combinator tree is transformed
into another AST representing an abstract machine where the structure of the grammar is lost,
but the control flow of the parser is readily available: this allows for more low-level optimisations
and control-flow analysis. Finally, to leverage the full benefits of static knowledge and eliminate
the traditional overhead of parser combinators the evaluation of the machine is staged, producing
high-performance code. For instance, here is the code our pipeline produces for the ident parser:

ident :: String — Maybe String
ident input =
let loop (c : cs) dxs finish | isAlpha ¢ = loop cs (dxs - (c:)) finish
loop cs dxs finish = finish (dxs []) cs
in case input of
c:cs | isAlpha ¢ — loop cs id (Axs _ — if isKeyword (c : xs) then Nothing else Just (c : xs))
_ — Nothing

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:3

The above code is absent of any of the original combinators and there is no evidence of either of
the two AST representations. Instead, there is a tail-recursive function loop that reads alphabetical
characters — collecting them in a difference list — provided with a continuation finish that verifies
the characters do not form a keyword. Here we use Haskell as our lingua-franca, but our approach
generalises to other languages: for instance, the staged meta-programming framework in Dotty
has facilitated a similar implementation. The effectiveness of the approach, however, relies on
compile-time code generation and the quality of the optimiser processing the generated code.

Contributions. After introducing the relevant background (Section 2), this paper introduces
Parsley, a new library that leverages selective functors to permit analysis and static compilation. In
addition, our key contributions are that:

e We leverage our AST to perform rich domain-specific optimisations and analysis (Section 3).

e We additionally ensure that the types of the AST during optimisation and compilation are
preserved with indexed functor fixpoints (Section 3).

e We use a CPS abstract machine with a fully typed stack for intermediate results (Section 4).

e We remove costly overheads of the pipeline and interpreter with staging whilst still maintaining
the above benefits (Section 5).

The paper concludes by providing benchmarks to support our claims (Section 6) and by discussing
the effectiveness of the approach as well as future and related work (Section 7).

2 BACKGROUND

Parser combinators provide a way to write top-down recursive parsers without worrying about the
machinery of the underlying parser. There is no need to thread state, consider how to consume
tokens, or perform any careful book-keeping of non-determinism or backtracking. They are high-
level, retaining far more of the structure of a grammar than the hand-written equivalent. Unlike
parser generators, they leverage the principle that parsers should be first-class values: this is
a powerful technique that allows for writing parsers with minimal duplication and promotes
compositionality and abstraction. This section will review basic parser combinators and selective
functors in preparation for Section 3, which introduces the combinator tree.

Applicatives. When constructing parsers, recognising strings is a ubiquitous operation; with
parser combinators, this can be done with the string combinator:

string :: String — Parser String

The parser string "ab" will succeed if the input starts with "ab", and fails otherwise. The beauty
of combinators is that string itself can be built from smaller building blocks in the host language.
To build string, it is necessary to have a way of recognising a single character on its own; more
generally, parser combinator libraries expose the satisfy combinator as this primitive:

satisfy :: (Char — Bool) — Parser Char

This combinator will, when provided a predicate on characters, create a parser that reads a single
character matching that predicate and fails otherwise. Using this it is easy to define a combinator
for recognising a specific character:
char :: Char — Parser Char (#>) :: Applicativef = fa — fb — fb
char ¢ = satisfy (= ¢) > purec pure :: Applicativef = a — fa

The implementation of char could be written as just a satisfy, but, in this instance, it is beneficial

for static analysis to explicitly state what character the parser will result in: the compiler is unable
to inspect the predicate given to satisfy in general. To this end, the applicative (x>) sequences two

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:4 Jamie Willis, Nicolas Wu, and Matthew Pickering

parsers and returns the result of the second, and pure produces a parser which always succeeds
with a given value and reads no input. Now the definition for string can be given in terms of char:

(<) :: Applicativef = f(a—b) > fa —fb
string :: String — Parser String traverse :: Applicative f = (a — fb) — [a] — f[b]
string = traverse char traverse f [] = pure[]

traverse f (x : xs) = pure (:) <o f x <o traverse f xs

The traverse function is defined in terms of both pure and («x>). The applicative parser pf <«> px
sequences the parsers pf and px and applies their results together. In essence, traverse takes a
list of values, transforms them into parsers and then sequences all their results together into a
list. For instance, string "ab" expands to pure (:) <> char 'a' < (pure (:) <x> char 'b" <> pure []).
Transforming a String into a list of parsers that recognise the individual characters and sequencing
them together results in a parser that recognises the String itself.

Parsers can be as granular as recognising single characters, and parser combinators compose
them together. Consequently, lexing and parsing are not distinguished, since these phases only
differ by the tokens they accept. By leveraging lexers as yet another building block, this allows
for context-sensitive lexing, which can be useful: the programmer can now be more explicit about
what specific lexemes are valid within the rules of a grammar.

Alternatives. Sequentiality alone is not enough to write most parsers: there needs to be an
operation for choice. The alternative operations provide this behaviour:

empty :: Alternative f = fa
(@) = Alternativef = fa—> fa—fa

These operations permit failure and branching, respectively.

As an example, matching the regular expression A | B, can be achieved with char 'A' «> char 'B".
There are many different options for the semantics of («), in particular in this paper we refer to
the deterministic-choice operation with backtracking. This operation is a criteria for being able to
parse PEG grammars [Adams and Agacan 2014; Ford 2004]. The operation has a caveat though:
backtracking is only permitted when no input was consumed during a failed branch. This allows
for more useful error reporting [Ford 2002], as it restricts error messages to the greediest parse.

In order to facilitate backtracking in instances where greedy parsing is not desirable, many parser
combinator libraries provide a try operation, which rolls back consumed input on failure:

try :: Parser a — Parser a

This example try (string "aa") « string "ab" will backtrack after reading an 'a' so that reading
the string "ab" can be attempted. Without the try this parser would fail when given "ab".

Parser combinators belong to wider classes of abstractions called applicative and alternative
functors that adhere to a set of laws (Figure 2). Read from left-to-right, these laws serve as a guide
for optimisation strategies and normal forms that are used in the high-level optimiser (Section 3.1).
The concrete deterministic semantics of («>) requires some laws that are not generally applicable to
all alternatives (Laws 7 and 8) [Gibbons and Hinze 2011].

Selectives. As previously outlined (Section 1), it is nice to have access to at least some context-
sensitivity. Full context-sensitivity is enabled by monads - as they can generate new structure based
on previously parsed results — but monads are not suitable for the approach given in this paper.
Recently, however, selective functors have been inserted into the hierarchy between applicatives
and monads [Mokhov et al. 2019]. In addition to applicatives, Mokhov et al. [2019] introduced a

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:5

pureid <> p =p (1) empty <> p = empty (7)

pure f <+ pure x = pure (f x) (2 pure X <> p = pure X (8)

u <o pure x = pure (AMf = fx) sou (3) branch (pure (Leftx)) pq =p <o purex (9)
u<co (Ve w) = pure (1) o ueovaenw (4) branch (pure (Righty)) pq = q <o purey (10)
(pwq)or=pa(qwr) (5) branchb (puref)(pure g) = pure (eitherfg)<o>b (11)

empty @ p = p ® empty = p (6) branch (x x> y)pq =x= branchypq (12)
branch b p empty = branch (pure swap < b) empty p (13)

branch (branch b empty (pure f)) empty k = branch (pure g <> b) empty k where
g = either (const (Left ())) (either (const (Left ())) Right - f) (14)
Fig. 2. Applicative (1, 2, 3, 4), Alternative (5, 6, 7, 8) and Selective Parser laws (9, 10, 11, 12, 13, 14).

function branch :: Selective f = f (Either xy) — f(x — a) — f(y — a) — f a% The idea is that
given branch b | r, the value returned by b governs which of the two other arguments is executed. If
b gives back a Left then | is executed, and if it gives back Right then r is executed. All three of these
arguments can be known statically, but the behaviour of the combinator is only known at runtime.
This allows for static analysis, but the control flow of these combinators can only be approximated.
Using branch, the filter combinator advertised in Section 1 can be implemented:

ident = some (oneOf['a' .. 'z"]) “filteredBy" (not - isKeyword)
filteredBy :: (Selective f, Alternative f) = fa — (a — Bool) — fa

filteredBy mx f = branch (pure cond <> mx) empty (pure id)
where cond x = if f x then Right x else Left ()

This implementation first executes mx and maps a function over the result which tests the predicate f
injecting the result into an Either () a. The Left branch represents failure, and Right represents
success. The left branch then performs empty, the failure operation, and the right branch returns
the result from the Right unchanged. Selectives can handle many of the monadic patterns, though
naturally not all of them. They can perform anything that involves a localised choice, but they
cannot generate new parsers based on the results of old ones. As such, our library is an extension of
PEG grammars that also supports a form of context-sensitive decision making. Our library satisfies
the selective laws and makes use of additional properties to form optimisations (Figure 2) .

Parser laws. As well as the laws governing applicatives and selectives, there are some laws that
are true for parsers in particular (Figure 3). These reference two more primitive parsing operations:

look :: Parser a — Parser a
neglLook :: Parser () — Parser ()

These operations perform positive and negative lookahead respectively: negative lookahead
neglLook p succeeds when the given parser p fails, consuming no input. For example, it is possible
to form the eof parser with neglLook (satisfy (const True) %> pure ()), which ensures that by looking
forward, there is no character at all. The interactions between look and neglLook in particular are in-
teresting: notice the inversion between interactions with look/neglLook and pure/empty in Laws 17,
18, 19 and 20; the operations have a correspondence to id and not as boolean functions, with pure
and empty as True and False. This continues, as («») corresponds to (V) and (x>) corresponds to (A),
giving rise to De Morgan’s laws instead of distributivity for negative look-ahead’s interactions with

2 The original formulation uses the equivalent select :: Selective f = f (Either x a) — f (x — a) — f a function instead of
branch: we choose branch as it is a more efficient implementation and more intuitively maps to the machine in Section 4.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:6 Jamie Willis, Nicolas Wu, and Matthew Pickering

look (look p) = look p

—~
3]
—_

try (satisfy f) = satisfy f (15

try (negLook p) = neglook p (16 look p « look q = look (try p <> q) (22

)

)

look empty = empty (17) neglLook (negLook p) = look p (23

look (pure x) = pure x (18) look (neglook p) = neglook (look p) = neglookp (24
)

hegLook empty = pure () (19 neglLook (try p <> q) = neglLook p *> neglLook q (25
negLook (pure x) = empty (20) neglLook p «> neglook q = neglLook (look p x> look q) (26

Fig. 3. Try (15, 16), Lookahead (17, 18, 21, 22), Negation (19, 20, 23, 24) and De Morgan’s Laws (25, 26).

)
)
)
)
)
)

(«) and (x>). This is related to Kleene-algebras with tests [Kozen 1997], but where commutativity
of (A) does not hold, as it is sequencing in the Kleene-algebra portion.

3 THE COMBINATOR TREE

The combinators the users interact with are represented as nodes of an abstract syntax tree (AST).
The tree preserves, refines and exploits all of the semantic information about the original grammar.
The AST is a recursive type formed by taking the fixpoint of a non-recursive syntactic functor. This
can be traversed in a structured fashion [Hagino 1987; Hinze et al. 2013] to perform optimisations
and analysis. The combinator tree is not the best way of expressing the control-flow information of
the parser. This structure will be transformed in Section 4 to accommodate a better expression of
control-flow information.

Syntax. The transformations on the combinator tree for optimisation, analysis, and compilation
are folds over the language syntax [Gibbons and Wu 2014]. Expressing the syntax as fixpoints of
functors allows traversals to be defined in terms of algebras, which not only simplify the definition
of recursive functions but also allow fusion to occur. Instead of a fixpoint with monomorphic
syntax, an indexed fixpoint is leveraged providing polymorphic syntax [McBride 2011]:

newtype Fix (syn :: (+ — %) — (¥ — %)) (a :: %) where In :: syn (Fix syn) a — Fix syn a

The Fix syn a structure represents syntax trees with nodes shaped like syn where the tree is indexed
with the type a. The syntactic indexed-functor given to Fix for parsers is:

newtype Parser a = Parser (Fix ParserF a)
data ParserF (k :: * — x) (a ::) where

Pure :a — ParserFka

Satisfy :: (Char — Bool) — ParserF k Char
Try i ka— ParserF ka

Look i ka— ParserFka

NeglLook :: k () — ParserF k ()
(:<x>:) :k(a—b) > ka — ParserFkb

(%) ::ka— kb — ParserF kb
(o) i:ka— kb — ParserF ka
() ika— ka— ParserFka

Empty : ParserFka

Branch =k (Eitherxy) — k(x — a) — k(y — a) — ParserFka
The type ParserF k a represents a single layer of a parser AST. The type index k represents the
type of the children inside each node: when considering the AST usually k = Fix ParserF following

from the specialised In :: Parser (Fix ParserF) a — Fix ParserF a. The type index a represents the
result type of the parser, for instance Pure 7 :: ParserF k Int for all types k. The role of this type

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:7

index a, and the reason why an indexed fixpoint is used, is that it ensures that the nodes of the
AST can only go together if the combinators are well-typed: this information is preserved, and can
be called upon again when performing pattern matches on the nodes.

These constructors mirror the structure of the parser combinators themselves: the operations
that the user interacts with are all functions (smart constructors) that serve as wrappers around the
combinator tree constructors. It is worth noting that Item :: ParserF k Char is a possible alternative
for Satisfy, as satisfy f = item “filteredBy" f, where item reads any single character. Satisfy is
chosen as it retains more information than Branch would, namely the character is not modified
in any way: consider the difference in the guarantees about behaviour between satisfy f and the
equivalent branch (pure g <> item) empty (pure h) for abstract f, g and h. Satisfy also interacts
nicely with termination analysis, unlike selectives.

Semantics. The recursion principle cata provides a clean way to work with the Fix ParserF a
structure: it removes recursion from any passes over the structure, allowing the function to focus
on a single layer at once and guarantees no re-computation of any results. It is defined as follows:

imap :: IFunctor f = (Vi.ai > bi) > fai — fbi

cata :: IFunctor syn = (Vi.synai — ai) — Fixsyni — ai

cata alg (In x) = alg (imap (cata alg) x)

The function cata says that, given a function alg (called an algebra) capable of transforming a layer
(the shape of which given by syn) of the structure without having knowledge of its concrete type

index i, an entire Fix syn i can be folded into a value of type a i. As an example, here is a function
which computes the size of a parser:

data Const a k = Const a unConst :: Constak — a
size :: Fix ParserF a — Int unConst (Const x) = x

size = unConst - cata alg where
alg :: ParserF (Const Int) a — Const Int a

alg (Pure) = Const 1

alg (Satisfy _) = Const 1

alg (Try (Const n)) = Const (n + 1)

alg (Const n :x: Const m) = Const (m+n + 1)
alg ...

The function size is a fold over the combinator tree with the function alg, which non-recursively
combines results computed from its children. The Const datatype is used to ensure that the type
index of each combinator node is preserved as required by the type of cata.

3.1 Combinator Tree Optimisation

The advantage of having the deep-embedded combinator tree is that it permits inspection of the
grammar as well as optimisation. Optimisations performed on the AST are based on the laws
governing applicative, alternative and selective parsers (Figures 2 and 3). Most combinators in the
library are composite operations formed out of many constructors, however the redundant (:#>:)
operation is included to provide symmetry with Pure (Section 4), and to permit useful optimisations
requiring more information: as usual, static analysis is not able to distinguish between the composite
(#>) and (¢x) as they both have the shape pure f <x> p <> q where f is not inspectable.

Fusion. In particular, two useful forms of optimisation are the applicative and selective fusion
laws. Applicative fusion [Delbianco et al. 2012; Kiss et al. 2018] is the idea that any pure computation

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:8 Jamie Willis, Nicolas Wu, and Matthew Pickering

can be lifted out of an expression and combined in one place, as a pure. Essentially, Law 2 performs
the actual fusion, Law 3 moves pure to the front of the computation and Law 4 re-associates
operations after a use of Law 3. Applicative fusion is very useful in simplifying common idiomatic
parsers. Recall the idiomatic definition of the string combinator presented in Section 2:

string :: String — Parser String
string = traverse char

The unrolled code for string "ab" would be pure (:) <x> char 'a’ <o (pure (:) <> char 'b"' <o pure []).
However, with applicative fusion optimisations in play the actual resulting parser is satisfy (=
'a') x> satisfy (= 'b') > pure "ab", which involves far less redundant computation. This is a
common theme with our library, the simpler or more naive the definition, the better the optimiser
performs. This is in contrast to libraries such as megaparsec, where the authors provide specialised
combinators to improve performance, but now users must be aware of these combinators and
understand how to use them.

In a deep embedding, the implementation of such optimisations is relatively simple. Optimisations
are applied by a bottom-up fold over the AST using the following algebra:

opt :: ParserF (Fix ParserF) a — Fix ParserF a
opt (In (Pure f) :¢x>: In (Pure x)) = In (Pure (f x))

opt (u o In (v iem: w)) = opt (opt (opt (In (Pure (+)) <oz U) :ck5: V) 51 W)
opt (u :<xo: In (Pure x)) = opt (In (Pure (flip ($)) :<x>: u))
<;;;t p =Inp

The function opt attempts to match each law or derived optimisation in turn and applies the
optimised direction if it matches. A law has an optimised direction when it reduces the size of the
AST or results in code using cheaper abstract machine instructions. Where the use of a law results
in a reduction, opt is re-performed in an attempt to apply new optimisations. This terminates since
a normal form will be reached [McBride and Paterson 2008], with finite reductive optimisations
taking place in-between: there are finitely many re-associations that can be made before everything
is left-associative and all the pures will be on the left, and subsequently reduced.

The parser laws also form a useful set of optimisations: neglLook is relatively expensive in terms
of instructions (look is cheap), so applications of Laws 23 and 26 reduce the number of instructions
generated. Selective fusion is where filteredBy operations are fused into a single branch: Law 13 is
used to establish a normal-form and then Law 14 performs fusion.

3.2 Recursion and Let-bindings

In practice, recursive or iterative parsers are very common and useful. However, in order to perform
finite traversals over the trees, it is necessary to have finite parsers. Essentially, it is necessary to
find recursion points in parsers and replace them with a named hole. Finding recursion points
is an instance of a more general problem, however: finding any parsers that were let-bound by
the user. The reason finding let-bound parsers is useful is to prevent code explosion caused by
inlining repeated parsers in multiple places. Consider the following combinator chainl1, which
parses left-associative applications of binary operators:

chainl1 :: Parser a — Parser (a — a — a) — Parser a
chainl1 p op = postfix p (pure flip <> op <> p)

This combinator will first read a p, then read many ops applied on the right to a p, binding most
tightly to the left. Notice how the parser p appears twice in the body of the combinator: if chainl1

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:9

is used to parse expressions, then every new precedence level would double the parser size. By
identifying that p is the same parser in both places it will be factored out, preventing code blow-up.
To put it in perspective, an expression parser for a language like C generated with let-bindings can
be thousandths of the size of the expanded version. The approach is as follows:

e Assign a unique identifier to each node in the combinator tree.

e Traverse the tree to identify nodes which are referenced multiple times.

e Factor these nodes into Let nodes within the tree.

Stable Names. One way of identifying let-bindings would be to require the user to name each
parser that they wished to bind. This mechanism would be clunky and vulnerable to mistakes. In
a language with pass-by-reference, like Dotty, the solution is straightforward: first assume every
parser is unique, then if two references are equal then they must come from a common shared
source - i.e. a let-binding. In Haskell, Gill [2009] first suggests using GHC’s StableNames to do this:
a StableName can be requested of any value and if requested again is guaranteed to be the same.
Furthermore, each value has a unique StableName: this fulfils the previous criteria for identifying
let-bound variables. The following datatype is used to represent the identifiers of parsers:

data ParserName = Ya.ParserName (StableName (Fix ParserF a))

The datatype ParserName encapsulates a stable name for any parser: by universally quantifying
the type parameter, it states that the type of a parser does not matter, only its name.

Defining Let-bindings. Let-bindings are found by inspecting a control-flow graph constructed by
recursive descent. The return type of this traversal is as follows:

data LetFindSt = LetFindSt {refs :: HashMap ParserName Int, recs :: HashSet ParserName
, before :: HashSet ParserName }

type LetFindCtx = HashSet ParserName

newtype LetFinder a = LetFinder (StateT LetFindSt (ReaderT LetFindCtx 10) ())

The ParserNames are generated by 10. The LetFinderCtx provides the names that have already been
processed within a local branch of the traversal. The LetFinderSt threaded through the traversal
is used: to track how many times a particular name was referenced (refs); keep track of which
recursive names have been identified (recs); and ensure that names that have already been processed
in a different part of the tree are not processed again (before).

The traversal itself is a bottom-up fold over the AST. The algebra is as follows:

findLets :: Fix ParserF a — ParserF LetFinder a — LetFinder a
findLets orig p = do name « makeParserName orig
addReference name
ifSeen name ({- then -} addRec name)
({- else -} ifNotProcessedBefore name
(do addName name (case p of
pf :co>: px — do pf; px
pa:q —dop;q

_ — do return ())
doNotProcessAgain name))

The idea is as follows: walk down the combinator tree, every time a node is encountered down a
particular branch of the the tree, increment its reference count. If at any point a node is encountered

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:10 Jamie Willis, Nicolas Wu, and Matthew Pickering

that is already present in the seen set, it is a recursion point and is marked as such. If a parent node
has been found in multiple parts of the tree, it should have a larger reference count, but its children
should not: they are children of a let-bound node, but are possibly not themselves let-bound. As a
result, the traversal only processes the children of nodes once.

After the traversal, all nodes with a single reference are discarded: having one reference is either
an indication that the name is not let-bound or that it should be trivially inlined. What remains is a
set of recursive parsers and a set of let-bound parsers.

Generating bindings. Once all the let-bindings have been identified, a second traversal is used
to refactor the AST to include a new Let :: Bool — MuVar a — ParserF k a constructor, where
MuVar a represents a concrete name and its type. The Bool is used to indicate recursive bindings.
This traversal is supported by a second monad:

newtype Letlnserter a =
LetInserter (FreshT Word
(StateT (HashMap ParserName Word, DMap MuVar (Fix ParserF)) 10)
(Fix ParserF a))

Here, FreshT is a monad which supports the generation of fresh variable names of type Word. The
State stores a map from ParserNames to their generated identifier and a dependent map that maps
a MuVar to its associated combinator tree: this preserves type information — a MuVar a always
maps to a Fix ParserF a, for any a.

letlnsert orig p = do name « makeParserName orig
let bound = HashSet.member name lets
let recu = HashSet.member name recs
vs «— gets fst
if bound V recu then case HashMap.lookup name vs of
Justv — let y = MuVar v in return (In (Let recu p))
Nothing — do v < newVar
modify (first (HashMap.insert name v))
q < postprocess p
modify (second (DMap.insert (MuVar v) q))
return (In (Let recu (MuVar v)))
else do postprocess p

The first task is to acquire the name for the original AST node and establish whether or not this
name is let-bound or recursive. If it is, then, if a Word has already been generated for this name
return a new Let node, otherwise ask for a fresh variable with newVar and insert into the relevant
maps. The postprocess algebra inserts lets into subtrees and optimises. After this phase, the 10 is
safe to eliminate with unsafePerformlO, since StableNames are no longer required.

Now that this phase has been ran on the combinator tree, it is guaranteed to be finite. This
permits the optimisation and analysis phases to run over this tree and it is guaranteed that this
will terminate. It also allows for the generation of a finite machine (Section 4) which is crucial for
staging away overheads in Section 5.

3.3 Analysis

Aside from optimisation and normalisation, it is possible to perform various forms of analysis on a
parser. These are enabled by the deep embedding of the combinators and, by using compile-time

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:11

staging (Section 5), these analysis phases do not impact the runtime for the user. This section will
describe two specific analyses: consumption analysis and termination analysis, though many other
analyses are possible, including backtracking analysis and error message analysis.

3.3.1 Consumption Analysis. Programs written using parser combinators usually incorporate
lexing and parsing together: the resulting parsers consume long strings of characters of a known
length. Instead of requiring a runtime length check for each character, it would be better to collect
all these length checks together into a single, larger, check.

Consumption analysis is a great example of how every part of the pipeline from combinators
down to Haskell code has a part to play, so it will be revisited later in the paper as more structure
becomes available. The first step for this analysis is to identify the points in the grammar at which
cuts take place - called cut-points. This information allows later stages of the analysis to determine
at which points length-checks cannot commute to earlier parts of the grammar: no length-check
savings can cross a cut, as this would change the semantics of the failure. To see why this is the
case, consider the parser string "aa" « string "ab": if the length checks were factored out, then
the parser first checks if there are at least 2 characters in the input. Otherwise, it backtracks to
another part of the wider grammar. However, if the length checks are left in, and an 'a' is read,
then if another 'a' is not read this parser is no longer able to backtrack (the semantics state that
backtracking after consuming input is illegal) — this is different behaviour.

Annotating the cut-points in the grammar is performed by a single fold through the combinator
tree. The information propagated is the cut-fulfilling properties of sub-branches and whether or
not the parent node in the tree demanded a cut (and the sibling branches have not yet satisfied this
demand). When a branch of a tree requires a cut from a parent and it satisfies it, this is marked as a
meta-node in the tree and its siblings are not required to handle any cuts themselves. Only a Satisfy
node may fulfil a demand for a cut. A non-indexed excerpt from the algebra is presented below:

cutAlg :: ParserF (Bool — (Fix ParserF, Bool)) — Bool — (Fix ParserF, Bool)

cutAlg (Purex) _ = (In (Pure x), False)
cutAlg (Satisfy f) True = (mkCut (In (Satisfy f)), True)
cutAlg (Satisfy f) False = (In (Satisfy f), True)

cutAlg (I =:r) cut =let(I’,handled) =1lcut
(r’,handled’) = r (cut A not handled)
in (In (I’ :%>:), handled Vv handled”)
cutAlg (p:w:q) cut = -- This is the case which doesn’t force a cut
let (q’, handled) = q cut -- But it might have to handle a cut from a parent
in (In (fst (p False)) :: q’,handled) -- q will handle the cut if p fails

In the Pure case, a cut is never satisfied, but in the Satisfy case, a cut is always satisfied and a cut
meta-node is generated if necessary. In the (:+>:) case (and similar for other sequencing operations)
then the right-hand side only needs to handle a cut if the left did not. In the (:«>:) case, which does
not backtrack, the first branch is not required to handle cuts.

The next task is to collect up the amount of input that is consumed across a continuous path
through the grammar. This is difficult to perform on the combinators, however, because nodes
usually associate to the left, and so tracking control flow is very involved. As it will turn out, the
correct domain to find this information will be in the machine (Section 4.3).

3.3.2 Termination Analysis. An easy mistake to make when writing parsers with a parser combi-
nator library is to accidentally write a left-recursive parser. This is a parser that consumes no input
before recursing and trying the same grammar rule again. Another example of non-termination is

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:12 Jamie Willis, Nicolas Wu, and Matthew Pickering

a parser which iterates over only pure computations: this parser will never fail, so the iteration
never ends. Termination analysis aims to catch instances of this problem and report them back to
the programmer. The basic idea is to use abstract interpretation to execute a parser, determining
whether or not there exists a branch which self-recurses without having consumed any input at all.
This can also be done as a bottom-up traversal on the combinator tree.

The problem with this analysis lies in the fundamental incomputability of the halting problem,
of which this is a variant. The formal description of the analysis is to guarantee that a parser
consisting of only total functions will terminate when given finite input. Notably, termination of
purely applicative parsers is decidable: the control flow through the parser is completely statically
determinable. For selective parsers, however, termination is non-decidable; consider the following:

bad :: Parser ()
bad = branch (char 'a' $> Left () «> pure (Right ())) (const <$> bad) (const <$> bad)

Recall that any functions or values in a parser are treated as black boxes, so the Parsley compiler is
unable to distinguish between the Left and Right values in the condition. The human can see that
bad does not loop in the Left branch, as an 'a' must have been read, but does loop in the Right
branch, because no character was read. However, the machine cannot tell whether the input was
consumed for the Left or the Right branch. In this instance it will over-approximate suggesting
that — since at least one of the recursive branches consumes no input, and the condition may not
consume input - the parser is left-recursive. The analysis can suggest false positives: consider
removing the recursion on the Right branch of the example, creating a non-left-recursive grammar.
The parser would still be erroneously reported as left-recursive and, as such, approximation yields
warnings instead of errors. As such, while this analysis is necessarily imperfect, it is a nice example
of how static analysis with selective functors works [Mokhov et al. 2019], and the trade-off is
whether selective instances of this problem are just ignored, or the compiler is overly cautious
in reporting them. Regardless of which approximation is chosen, this analysis will still provide
accurate feedback for grammars that are purely context-free.

4 COMPILATION TO ABSTRACT MACHINE

The representation of parsers as a deep embedding of the combinators allows the compiler to
perform complex analysis and law-based optimisation of the trees. At the same time, however, it
has some disadvantages: firstly, the structure of the grammar is available, but the control flow of
the parser is not explicit; and, secondly, the combinators are more rigid building blocks that lead to
redundancy in the representation.

The abstract machine introduced in this section addresses these concerns: by converting the
combinators into a continuation-passing style (CPS) instruction set [Kennedy 2007], the sequence
of operations required to perform a parser becomes explicit. To translate scoped operations such as
(@), try, and look, multiple instructions are used but, as a result, it becomes very difficult to recover
the original scoping of the parser again. Fortunately, all the analysis that relies on scope and the
grammar will already have been performed on the combinator tree and is readily available. These
new instructions are more general and expressive than the combinators they represent, allowing
the machine to represent a wider variety of high-level operations with less instructions.

4.1 The Machine

Since our library has ousted monadic combinators, context-sensitive grammars are no longer a
concern: as such, a natural abstraction for the parsers is a push-down automaton — a machine
with a single stack with which to store tokens and results. The abstract machine presented here is

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:13

similar to a push-down automaton: it has a operand stack storing the results of the intermediate
parsers, but also has a mechanism to handle failures and backtracking as well as recursion.

When designing the combinator tree, a key design point was to preserve the types of the combina-
tors within the nodes of the tree. This provided a light-weight assurance that the optimisations and
transformations preserved the original type of the parser. This property must be carried forward
into the abstract machine as well. In this case, the CPS transformation of the combinators naturally
reveals the lifetime of a value produced by a parser: how long it must be kept around before being
used to complete an operation. In terms of a stack machine, the lifetime of a value is how long it
remains on the stack, and the machine better preserve the types of the values on the stack as the
computation progresses [Benton 2005].

In addition to the stack however, the type of calls to recursive parsers must also be preserved
within the machine: when a parser recurses, it will be expected to return a result of a certain type,
and it must be the case that this value will make it onto the stack when the parser returns. Enforcing
this relationship will be examined more later.

Applicatives. Like the combinator tree, the machine is a syntactic functor, except it has a different
kind with more indices (for clarity, Fix is overloaded). Here is the definition of a portion of the
applicative instruction for the machine functor M:

dataM (k:: [*] > % — % — =) (xs = [*]) (r:: %) (a :: *) where
Halt = M k[a] Void a
Push:x —> k(x:xs)ra— Mkxsra
Pop :kxsra— Mk(x:xs)ra

The type M has four type indices: k is the same as in the combinator tree, it represents the shape of
the values contained within each node (often Fix M); xs is a type-level list representing the types of
the values required on the stack upon entry to the given instruction; r represents what type the
machine returns to the caller in the case that this is a recursive call; type a is the final “goal” of
the machine, in other words it directly corresponds to the type of the top-level parser that was
compiled to generate this machine.

The instructions Push and Pop form two of the instructions needed for applicative combinators.
They demonstrate how interactions with the stack are preserved at the type-level: Push expects
the machine that is executed after it to require an x on the front of some stack xs, so it is itself
a machine which just requires xs and promises to put the value of type x onto the stack; Pop is
similar in that it makes a promise that it will somehow remove the first value from the stack to
make it compatible for the next machine. The Halt instruction is the final instruction executed by
the machine and demands that the stack must contain precisely the goal value of type a; in addition
it enforces that there is no more recursion to perform by setting the return type r to be Void.

Using the type index xs ensures that instructions which operate on intermediate values can only
be put together in the right way. For example, (push () - push ()) halt® will not compile, since halt
has type Fix M (b : []) Void b and push () - push () has type Fix M ((): () : xs) ra — Fix M xsr a,
but it is not possible to unify the types () : () : xs and b : []. This provides a sanity check that the
translation from high-level combinators to low level stack machine at least preserves the intended
user-operations and that the implementation of these instructions affect the stack in the advertised
way. This guarantee is provided by the polymorphic types in the instruction: without any concrete
knowledge about the types, it is not possible for a malevolent code-generator to replace any of
the user’s functions with its own. It is not perfect however, the malevolent code generator could

3 From here on, we reference instructions by a smart constructor, as an example push x = In - Push x

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:14 Jamie Willis, Nicolas Wu, and Matthew Pickering

replace any part of the user’s code with the failure instruction Fail. Instead of being a concrete
proof, this mechanism serves as a light-weight verification [Morrisett et al. 2002].

Compilation. Before introducing any more instructions, the compile function that translates the
combinator tree to the machine will be introduced, highlighting the translation from pure, (:%>:)
and (:<x:) into Push, Pop and Halt. As more instructions are presented, the relevant translation
from compile will also be given, solidifying the relationships between the two domains:

compile :: Fix ParserF a — Fix M [] Void a
compile = cata compAlg halt

type CodeGen ax = Vxsr.Fix M (x:xs)ra — Fix M xsra

compAlg :: ParserF (CodeGen a) x — Fix M (x:xs)ra — FixM xsra

compAlg (Pure x) = push x

compAlg (p=>:q) =p-pop-q

compAlg (p:«<:q) =p-q- pop

First, notice the type of the algebra: given a parser immediately producing a value of type x in some
wider context producing a result of type a, provide a machine that will consume only that x and
create a machine which requires the rest of some stack xs to achieve the goal a. This encodes an
important property of the machine used as a lemma in proofs of correctness: a successful parser
should push exactly one item to the stack.

The execution order of the parsers is made clear here as the machines are read left to right: p %> q
should be the same as performing p, popping its single result from the stack and then performing
q; and p <« q should perform p then q and then pop the top of the stack which is q’s result. The
pure combinator should just push a value to the stack and continue. The applicative instructions
are completed by the Lift2 and Swap instructions:

dataM (k:: [*] > % — % —) (xs :: [*]) (r:: %) (a :: *) where

Lift2 = (x >y —>z) > k(z:xs)ra—> Mk(y:x:xs)ra

Swap = k(x:y:xs)ra— Mk(y:x:xs)ra
app = lift2id
compAlg (pf :<x>: px) = pf - px - app
The Lift2 instruction is used to reduce the top two elements of the stack with a provided function.
It can be used to implement (:<+>:) with the id :: (a — b) — a — b function. It is preferred instead
of an App instruction for its versatility: app = lift2 id, but lift2 f = push f - swap - app - app. The
reason that (:<x>:) was chosen for the combinator tree, however, is because the laws are more easily
expressed in terms of («>) as opposed to liftA2. The Swap instruction is a simple stack exchange
operation, which will be used for compiling other operations.

Selectives. In addition to the applicative instructions, Case is used to implement branch:

data M (k:: [%] = % — % — %) (xs = [*]) (r:: %) (a:: *x) where

Case: k(x:xs)ra— k(y:xs)ra— Mk (Eitherxy:xs)ra
compAlg (Branch b I r) = Ak — b (case (I (swap (ﬂ k))) (r (swap (ﬂ k))))
Given two machines, each accepting one half of a co-product, Case forms a machine that pattern

matches on the co-product to choose which branch to take. The translation shows that branch b | r

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:15

first performs b, then uses Case to arbitrate between the left | and right r branches applying them
to the corresponding value from the Either x y on the stack. The continuation machine k is given
to both branches. This will be compiled to a Haskell case expression.

Alternatives. There are three instructions associated with the scoped operations:

data M (k:: [#] = * — x — %) (xs:: [*]) (r:: %) (a : *) where

Fail 2Mkxsra
Catch :kxsra— k(String:xs)ra— Mkxsra
Commit:kxsra— Mkxsra
handle :: (Fix M xsra — Fix M (x: xs) ra) — Fix M (String : xs) r a
— FixM (x:xs)ra— FixMxsra

handle p h k = catch (p (commit k)) h

compAlg (p :«: q) = Ak — handle p (parsecHandle (q k)) k
compAlg Empty = const fail

Failure and backtracking is managed by exception style handlers. These are managed on another
stack within the machine (Section 5). These three instructions interact with the handlers: Fail
corresponds directly to empty, it will execute the next handler; Catch m h will push h to the
handler stack and will attempt m within this context; and Commit is used to remove handlers from
the stack, closing the scope of the handler. Both Catch and Commit interact with each other using
the handle function: this encloses the first argument p in a failure catching scope handled by the
second argument h, continuing with the third argument k as a continuation. The contents of the
handler parsecHandle is discussed in Section 4.1.1.

Primitive instructions. The instructions corresponding to satisfy, try, look and neglLook are
outlined here, as well as those required to implement recursive parsers.

data M k (xs :: [*]) r a where

Sat :(Char — Bool) — k(Char:xs)ra— Mkxsra
Tell ::k(String:xs)ra— Mkxsra

Seek::kxsra — M (String:xs)ra

Ret =Mk([r]ra

Call :: MuVarx — k(x:xs)ra— Mkxsra

compAlg (Satisfy p) = sat p
compAlg (Try p) = handle p (seek fail)
compAlg (Look p) = tell - p - swap - seek
compAlg (Let _p) =callp

The Sat instruction maps to Satisfy directly and is the only source of conditional failure within the
instruction set. The instructions Tell and Seek work together to realise look: Tell pushes the current
input onto the stack, then p is performed (and its result placed second onto the stack) and then
Seek restores the input back to its original state, leaving the result from p. Since these do not rely
on failure handlers, this operation is virtually free. The try operation is implemented in terms of
already existing instructions by resetting the input back to the start of the scope and failing again.

The final two instructions are Ret and Call, a pair used to implement recursion within the
machine. To prevent an infinite machine, let-bound parsers are compiled (using Ret instead of

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:16 Jamie Willis, Nicolas Wu, and Matthew Pickering

Halt) and stored in a type-indexed map indexed on the return type parameter r. The instructions
Ret:: Mk [r]raand Halt:: M k[a] Void a are similar except Ret denotes there is yet more to do
before the goal of type a is reached (and instead the value of type r should be passed back to the
caller). Call u k fetches the corresponding machine for p from the map and executes it, setting k as
the return continuation: this is where the interaction with r is made very explicit, the machine k
must expect a value on the stack of the same return type x as the machine p and the current return
type is left untouched.

Negative Lookahead. 1t is interesting to look more closely at the compilation of neglLook. The
combinator is compiled using the same components as look, («), and try but without care it is
possible to implement incorrectly. Consider the following plausible definition of neglLook:

neglLook p = try (look p %> empty) « pure ()

This definition does not appear problematic at first glance: negative look-ahead tries to look-ahead
for p, and if it succeeds fails and returns () otherwise. However, this has a subtle bug: the empty inside
the («) will actually be handled by the («>) and, as such, this parser always succeeds. Traditionally,
in monadic parser combinator libraries such as parsec, join :: Parser (Parser a) — Parser a is used
to fix this problem:

neglLookM p = join (try (look p #> pure empty) « pure (pure ()))

The monadic definition works because the empty and pure () are wrapped up inside parsers
themselves. If look p fails then the fragment inside the join will return pure (), and if it succeeds
empty is returned. After the scope of the («») has been exited, the join combinator executes the
resulting parser. However, join is monadic and, as such, is not expressible in our language. The
original problem was caused by the scope imposed by the combinators being too rigid, and join
loosens this to allow the floating of parsers through a scope boundary. However, as the instructions
work in pairs to delimit scope they are more flexible than the combinators, illustrated by the
compileAlg for NegLook:

compAlg (NegLook p) = Ak — handle (tell - p - pop - seek) (seek (push () k)) fail

The first argument to handle performs the look p, but the Fail instruction has been placed as the
continuation for the handle instead, after the handler has been discarded. This is a major advantage
of compiling to the abstract machine as opposed the the combinator tree: there is much finer
grained control over the control flow of the parser.

4.1.1 Handlers. Throughout the previous section, there have been references to failure handlers,
these are regular machines defined in terms of the instructions used for the combinators. Handlers
will perform some combination of resetting state, propagating failure, or recovery.

fmap f = push f - swap - app
if t e = fmap (Ab — if b then Left () else Right ()) (case (pop t) (pop e))

parsecHandle :: Fix M xs ra — Fix M (String : xs) r a
parsecHandle k = tell (lift2 (=) (if k fail))

The if smart constructor builds a machine which requires a Bool on the stack, if that value is true it
performs the first machine else it performs the second. Using this, parsecHandle can be defined
obeying parsec semantics: if no input has been read since the scope was entered, then continue
with the provided machine, else fail. The fact that the handlers themselves can be encoded with the
instruction set designed for the core combinators highlights another strength of the approach -
especially given that only one of the look instructions are needed to implement each handler.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:17

4.2 Machine Optimisation

After the translation to the abstract machine, more optimisation opportunities are evident; some of
transformations that are possible on the abstract machine are now discussed [Appel 2007].

Join points. It is worth noting that this approach to compilation suffers from a code explosion
problem. Observe that in the compAlg case for (:«>:), the continuation k is referenced twice: this
means the generated code for this continuation will be generated twice. This is far from ideal, so
the machine also includes join points (¢-nodes) which can be generated by branching constructs
like Case and Catch as well as executed with the Join ¢ instruction [Maurer et al. 2017]. In terms of
the machine implementation (Section 5), this system is omitted for clarity: it obscures while adding
no extra insights. As another optimisation, a ¢-node of the form ¢; = Join ¢, can be elided and all
occurrences of ¢; can be replaced by ¢,. Furthermore, ¢-nodes of the form ¢ = Ret or ¢ = Halt
can also be inlined, since these instructions have a small code footprint.

Tail call optimisation (TCO). Tail calls are recursive calls that are executed at the very end of
a function. As they are the last thing to be performed, it is not necessary to save the state of the
function to perform them, as that state will be unused and discarded upon return. Traditionally,
some compilers are able to optimise tail calls by transforming them into jumps, making the function
into a raw loop. It is possible to do this as well in this machine: after introducing another instruction
Jump p, the alg case for Let can be adjusted as follows:

compAlg (Let _ p) (In Ret) = jump p
compAlg (Let _ p) k =call pk

Furthermore, as the error handling stack is rolled back on a Ret instruction (since scopes are
exited), Commit instructions before a Ret are also removed, providing more opportunities for Jump
instructions. Using Jump is especially important for languages without sophisticated TCO.

Deep inspection. The composition of the handlers for (:«>:) and Try form the handler for neglLook.
Recognising this pattern and generating specialised code with the improved handler can help reduce
the size of the code that the compiler will have to optimise — though GHC often generates equivalent
code this method is more robust and portable. However, these patterns are more than one layer of
AST nodes deep: a key property of cata is that it does not give access to sub-structures at each level
of recursion. As a result, to perform these sort of peephole optimisations, it is necessary to change
to a different recursion scheme. In the spirit of structured recursion, it should not be possible to
retraverse the structure, instead the past results should be inspectable. This allows the peephole to
match a nested pattern, but retain the original results. This fold is called a histomorphism [Hinze
and Wu 2013; Uustalu and Vene 1999], and the non-indexed definition is given below:

data Memofa=a<f(Memofa)

extract:: Memofa — a

extract (x <_) = x

histo :: Functor f = (a —» b) — (f(Memo fa) —» a) — Fixf —> a

histo gen alg = extract - cata (Ax — alg x <x)

This is a cata where the intermediate result of every step is stored in a memoising structure

alongside the subtree itself: the intermediate Memo f a structure preserves the history of the fold.
The peephole algebra will search for patterns that can be compiled with fewer instructions:

peephole :: ParserF (Memo ParserF (CodeGen a)) x — Maybe (Fix M (x: xs) ra — Fix M xsr a)
-- identify fmap, and use Fmap, improving locality

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:18 Jamie Willis, Nicolas Wu, and Matthew Pickering

peephole ((_ < Pure f) :cx>: (p < _)) = Just (p - fmap f)
-- identify liftA2, and use Lift2 directly
peephole ((_ < ((_ <« Pure f) :>: (p < _))) s (<)) = Just (p - q - lift2 f)
-- identify try p « q, and use more specialised handler
peephole (_<«Try (p < _)) :w: (q<_) = Just (Ak — handle p (seek (q k)) k)
peephole _ = Nothing

This algebra looks back into the history to see if what has already been transformed matches
common patterns like fmap or liftA2. It then applies the optimised generation and returns it in Just
to signify a match was found. If it returns Nothing then the Memo is removed and passed onto the
original compAlg by creating the algebra Ax — fromMaybe (compAlg (imap extract x)) (peephole x).

4.3 Consumption Analysis Revisited

In Section 3.3.1, an analysis pass was presented which aimed to remove as many length checks
as possible in the generated parser. To do this, the parser was augmented with meta-data about
where cuts occur within a grammar. This was computed to ensure the optimisation preserved the
cut semantics. The next stage of this analysis is to compute how much input is consumed along a
path through the grammar. This is difficult to perform on the combinator AST for two reasons:
the associativity of the nodes in the tree are not representative of the data flow through those
trees; and the join points within the grammar (that occur after a choice) are not readily available -
indeed, this structure does not even exist conceptually at that level. However, the conversion to
CPS form machine instructions reveals hidden structure in the grammar: simply walking through
the machine is enough to determine the control flow, and join points of the grammar are made
very explicit with the ¢-nodes. Conversely, the structure that enabled the annotation of the cuts
has been lost in this conversion as scopes have been flattened. Computing the number of tokens
consumed makes use of the following algebra*:

inputConsumed :: Fix M — Int
inputConsumed = cata alg where alg :: M Int — Int

alg Halt =0

alg (Push _k) =k

alg (Sat _k) =k+1
alg (Catchpq) =minpgq
alg (Call __) =0

alg (MkJoingp bk) =b +k

alg (Join ¢) =0

The logic for this function is very simple: The Sat instruction is the only one to increase the count
because Sat is the only action which consumes input. For Call, the idea is that it is unknown
whether a recursion will satisfy the cut requirements, so it does not consume any input. When the
parser branches (as in Catch), as much of the input should be factored as possible, which will be
the minimum of both branches. When join points are generated, the binding’s (b) consumed input
is added on to the machine where that binding can occur (k). It will be the responsibility of the
code generator to ensure the input consumed on the branches is correctly handled.

The compile function can now be augmented with this new information to correctly insert meta-
instructions that perform the actual length checks, given the information about cuts generated by

4The type indices xs, r, and a have been removed for clarity, only k remains

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:19

the last phase. In the end, the meta-instructions inserted by the code generation will be compiled
out during staging, and length checks will be sprinkled sparingly throughout the generated code,
according to the instructions. The consumption analysis is a nice example of data being computed
and refined flowing through all 3 stages of the library’s compilation. Doing all the work in only
one of these stages is difficult, but together it is easy.

5 STAGED INTERPRETATION
The abstract machine has been introduced syntactically (Section 4), but its implementation has not

been addressed. This section: briefly outlines how the machine is executed; describes the problems
with the approach; and gives their solutions using staging, with incremental improvements.

5.1 Interpreting a Machine

A parser of type Parser a by this point has been transformed into a value of type Fix M [] Void a.
This machine must now be interpreted to produce the final denotation of a parser, function of type
String — Maybe a.

type Evalxsra =T xsra — Maybe a
eval :: Fix M [] Void a — (String — Maybe a)
eval m = dinput — cata alg m (I" input HNil [] (error "Empty call stack"))
where alg :: M Eval xsra — Evalxsra
alg Halt = evalHalt
alg (Push x k) = evalPush x k

alg ...

The eval function folds the machine into a function of type I [] Void a — Maybe a, where T
represents the state of the machine parameterised by the type indices of the instructions at each
step. The interpreter runs by providing the input to an otherwise empty state I' and feeding this to
folded machine. The type T is defined as follows:

dataT xsra =T {input :: String, ops :: HList xs
, hs :: [String — Maybe a], retCont :: r — String — Maybe a}
data HList (xs :: [#]) where
HNil = HList []
HCons :: x — HList xs — HList (x : xs)

The state consists of four parts: the parser’s input (input); the operand stack (ops), a heterogeneous
list (HList) indexed by the types of the values on the stack; a failure handler stack (hs), which is a
list of functions that, when given input, may handle failure and continue the parser — handlers are
machines which have been partially evaluated; the return continuation (retCont) is the function
that is called when a parser returns from a recursive call - it is also a partially evaluated machine.

The definition of the evaluation functions for each instruction mirror the types of the instructions
themselves. A selection of instructions covering a range of concepts within the machine are provided
below to serve as example:

evalHalt :: (T [a] Void a — Maybe a)
evalHalt = Ay — let HCons x _ = ops y in Just x

The Halt instruction is the successful terminal operation of the machine and produces a value of
type Maybe a by returning the top of the stack ops wrapped in a Just.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:20 Jamie Willis, Nicolas Wu, and Matthew Pickering

evallift2:: (x >y — z) — Eval (z:xs) ra — (I (y: x:xs) ra — Maybe a)
evalLift2fk = Ay — let HCons y (HCons x xs) = ops y in k (y {ops = HCons (fx y) xs})

The Lift2 instruction extracts the top two elements of the stack and uses its given function f to
create a value of type z required on the stack for the partially evaluated continuation machine k.

evalFail :: (T xs r a — Maybe a)
evalFail = Aoy — case hsy of h: _ — h (inputy)
[] — Nothing

The Fail instruction will check the handler stack hs to see if there is a handler present that can
attempt to recover from this failure. In the event that there is some handler h, it is executed by
providing the input from the point that the machine failed. If there are no handlers then this is a
terminal operation which returns Nothing :: Maybe a.

evalSat :: (Char — Bool) — Eval (Char:xs) ra — (I' xs ra — Maybe a)
evalSat f k = Ay — case input y of

c:cs | fc— k(y{input = cs,ops = HCons c (ops y)})

_ — evalFail y

The Sat instruction checks to see if the first character c of the input matches its given predicate f,
and, if so, pushes it onto the stack and provides it to the continuation machine k. If the character
did not match, or the input is empty, it will defer to the Fail instruction.

This is a working implementation of the evaluator, but it incurs heavy interpretive overhead.
Without any further action parsers incur the cost of translation of the combinators through the
different intermediate representations and optimisation phases in addition to paying the cost
of interpretation: folding the machine; building the next state I' between each instruction; and
pushing and popping to the stack all contribute heavily to the runtime. Any benefits from the earlier
optimisations will be dwarfed by this significant penalty. To overcome this issue, the interpreter
should perform all static analysis of the grammar at compilation time and leave only the execution
of the parser on an unknown input at runtime. This can be done using staging.

5.2 Background: Staging

A key part of this work is to use principled meta-programming techniques [Rompf and Odersky
2010; Sheard and Jones 2002; Taha and Sheard 1997] to not only entirely eliminate the overhead
of the pipeline and interpretation but produce code that appears almost handwritten, creating a
bridge between abstraction and practicality. In particular, we make use of compile-time staged
meta-programming via Typed Template Haskell: a form of partial-evaluation that can be easily
reasoned about via explicit annotations. Staging allows the programmer to identify parts of their
program with static structure — code that does not depend on dynamic runtime values — and remove
the overhead of performing this computation in advance, possibly at compile time.

In the world of staging, a program fragment is a first-class value given type Code a for a piece of
code producing a value of type a. It is possible to manipulate this code using ordinary functions,
but importantly code can be synthesised and combined using the primitive operations quoting and
splicing. Roughly speaking, if x :: a then [x] :: Code a and if gx :: Code a then $(gx) :: a.

The traditional example of staged meta-programming is the power function where the function
power n x calculates x", for a positive n. Here is its definition, alongside the staged version power’:

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:21

power :: Nat — (Int — Int) power’ :: Nat — Code (Int — Int)
power 0 = Ax — 1 power’ 0 = [Ax — 1]
power n = Ax — x * power (n —1)x power’ n = [Ax — x * $(power’ (n — 1)) x|
The function is structurally inductive on the exponent and this structure can be readily exploited
by staging: usually, the exponent n is known in advance but the base x is not. This means that the
exponent is static information and the base is dynamic information and, as such, the definition can
be massaged to form a partial evaluator.

The function power’ n returns code that represents a function which raises its argument to a
specific nth power. When code is spliced in, it has the effect of inlining it, meaning that the non-zero
case returns a function which multiplies x by the unrolled function for n — 1. For instance:

power5 = $(power’ 5) = $([[Ax — x x x sk x# x *xx % 1]) = Ax = x# x * x kX # X * 1

In essence, power5 is turned into a regular function by a top-level splice, partially evaluating it at
compile time, so that at run time it is ready to use its argument in the unrolled definition.

5.3 Staging the Interpreter

It is important to note that the ability to stage the final evaluator was a primary concern design of
the combinator language. The use of selective functors over monads ensures that the structure of
the parser is statically known and this permits the definition of an abstract machine that reflects this
static structure as well as the control flow explicitly - this is well suited to staging. In the rest of this
section, structure that is present at run-time is highlighted using a grey box, and everything else
is information known at compile time that will be removed by the process of staging the evaluator.

The necessary binding-time analysis has been performed and so, given that the structure of
the parser is statically known but the input is only known dynamically, the eval function can be
staged in the usual fashion. As such, by a gentle massaging of the types the eval function can be
transformed from interpreter to compiler:

type Eval’ xsra = Code (T xsra — Maybe a)
eval’ :: Fix M xs Void a — Code (String — Maybe a)

The folding of the AST now produces code that implements a function from machine state I to a
result of type Maybe a. The definition changes appropriately:

eval’ m = [Ainput — $(cata alg’ m) (T input HNil [] noret)] where ...

evalHalt’ :: Code (T [a] Void a — Maybe a)
evalHalt’ = [Ay — let HCons x _ = ops y in Just x|
evallLift2’ :: Code (x >y — z) — Eval’ (z:xs)ra — Code (I (y:x:xs)ra— Maybe a)
evallLift2’ qf gk = [Ay — let HCons y (HCons x xs) = ops y

in $(qk) (y {ops = HCons $(qf) x y xs})]
The instructions remain mostly unchanged: they now return Haskell code instead of performing
an operation. As illustrated by evalLift2’, the code produced by the partial evaluation of the
continuation machine k must be spliced into the code that should be generated for Lift2 f k as
a whole. Recall that join-points were offered as a means to prevent code explosion in abstract

machine generation: this allows for multiple splices of the same code to not cause duplication by
generating a regular let-binding. Roughly, [$(X) ... $(x)] would become [lety = $(x)iny ... y].

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:22 Jamie Willis, Nicolas Wu, and Matthew Pickering

Removing state. The only code that the end user runs will be that found within the quotations. At
this point, all the interpretive overhead of folding and executing the machine instruction has been
eradicated. However, the machine state I still appears within the quotes in the above implementation
and, as such, will exist at runtime. The structure of T is statically known to be a record of four
fields, however; instead, a function with four arguments could be generated. Skipping the changes
to the wider code for brevity, the type of T itself becomes:

datal’xsra =
I’ {input :: Code String , ops :: Code (HList xs)
,hs ::Code [String — Maybe a] ,retCont :: Code (r — String — Maybe a) }

type Eval” xsra =T’ xsra — Code (Maybe a)
eval” m = [linput — $(cata alg” m (T’ [input] [HNIl] [[]] [noret]))] where ...

Here, the dynamic Code has been pushed into each of the fields of T, so that the actual record
itself is now statically known information. This now means that the record accessors used in the
execution of instructions come for free. In fact, even more information is known statically about the
I'" record: since the types of the values on the stack are known at compile time, this also indicates
that the shape of the stack itself is static information. This is also true for the handler stack. As
such, even these structures can be staged away at compile time:

data QList (xs :: [*]) where
QNil = QList[]
QCons :: Code x — QList xs — QList (x : xs)
dataT” xsra =
I'” {input :: Code String , ops :: QList xs
,hs ::[Code (String — Maybe a)],retCont :: Code (r — String — Maybe a) }

Now, the Code type constructor has been pushed inside the hs and ops fields themselves: hs is
now a list of code instead of code of a list; and the heterogeneous list ops is now a QList, which
stores code for each element instead of a value in the heterogeneous list. The implementation of
the instructions and evaluation function must now be updated to reflect these changes:

eval”’ m = [[Ainput — $(cata alg’”’ m (T” [input] QNil [] [noret]))] where ...

1244

evalHalt"” y = let QCons gx — = ops y in [Just $(qx)]

The change to eval is simple: instead of providing [HNil] and [[]] to I', QNil and [| are provided
instead. For Halt, the stack operation is performed outside the quotation, and the code on the stack
is wrapped up in a Just constructor within the quotation. The Lift2 instruction is similar:

evallLift2””” qf k y = let QCons qy (QCons gx xs) = ops y
ink (y {ops = QCons [($(af) $(qx) $(qy))] xs})

Again, the stack operations have been moved outside of the quotations: the elements of the stack are
obtained at compile time. The only work performed in this instruction at run-time is the application
f x y, even pushing this new value back onto the stack happens at compile time.

I//l

y = case hsy of gh : _ — [$(qh) $(input y)]
[] — [Nothing]

evalFai

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:23

The story for Fail is similar, establishing whether or not a failure handler exists is an operation
performed at compile time: if one exists the instruction returns the code which corresponds to the
application of this handler to the input otherwise returns code representing Nothing.

7

evalSat”’ qf k y = [case $(input y) of

c:cs | $(qf) c = $(k (y {input = [cs], ops = QCons [c] (ops y)}))
_ — $(evalEmpt y)]

In contrast, Sat illustrates an instruction which is almost entirely dynamic in nature: Checking
whether the input contains a character matching the predicate is still performed inside the quo-
tations, since the input is not known at compile time. However, the act of pushing this character
onto the stack still happens at compile time, as it is within a splice. What is left after staging is
something very refined with no extraneous overhead. The act of staging has enabled the complete
compilation pipeline to be moved to compile time, so the consumer of the parser does not pay any
of the cost of compilation or optimisation as is usually the case in parser combinator libraries.

6 BENCHMARKS

This section presents several benchmarks against a variety of libraries to support claims made about
this library’s performance. To perform these benchmarks, the Haskell library criterion® was used:
this library ensures that results are forced and inputs are computed ahead of the benchmarks. It
performs benchmarks multiple times and then performs statistical analysis on these results.

In order to be as fair as possible, parsers will follow the same grammars and produce the same
outputs. Where this is not otherwise possible (such as comparing between C and Haskell), the
parsers will be implemented as recognisers for the language, i.e. Parser (). It is worth noting that
where libraries like megaparsec have specialised combinators for improving the speed of parsers,
this will not be taken into account for these benchmarks. This reflects the advantage of our library
that no specialist knowledge of the combinators is needed to write parsers: this seems favourable
to the user, at least. The follow benchmarks are performed:

(1) A simple Branflakes benchmark, which serves to compare the most primitive operators as well
as iteration and basic recursion

(2) A JavaScript benchmark, which provides a more comprehensive stress test of common patterns,
such as recursion, expression parsing and non-trivial lexemes

(3) In order to compare the performance of C and Haskell, a Nandlang® recogniser was written in
both Bison/Flex and our library

6.1 Branflakes

Branflakes is a language with 6 single-character operations (+, -, ., ,, <, >) and a scoped operation
(CJ). Everything else in the language is considered a comment. This is a very simple grammar with
a mix of iteration for linear sequences of operations and recursion when a [is encountered.
There are two benchmarks testing both String and Text as the input mediums: String is the
traditional list of characters representation whereas Text is an often faster representation backed
by a list of arrays. As attoparsec does not support String parsing, it is omitted from the first
test, whereas happy is only tested on Strings. Figure 4 shows that, relative to our library, other
parser combinators are consistently worse and happy is at least 2x slower. While attoparsec can
outperform megaparsec, it is still trailing behind Parsley. The improved relative performance of

Shttps://hackage.haskell.org/package/criterion
®https://github.com/Jellonator/Nandlang

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

120:24 Jamie Willis, Nicolas Wu, and Matthew Pickering

Parsley in the hello world benchmark is due to the number of comments, for which fast code is
generated. The compiler benchmark is slightly worse as it relies on non-tail recursion more.

—— 3.4 ‘
[210.42
helloworld_golfed [—— .5 6.88 B
2.37 ’
3.08
11.84
[123.91
helloworld —[,,,,,,,,,,,,,,,,,,, ST E— IrIrrY =3 15.21 B
: 113.57
compiler I
| | | | | | | | |

012 4 6 8 10 12 14 16 18 20 22 24 26

== parsec (String) . parsec (Text) mm Mmegaparsec (String)
-

o, megaparsec (Text) mm happy (String) —. attoparsec (Text)

Fig. 4. Performance of libraries parsing Branflakes, time relative to Parsley

6.2 JavaScript

In order to more fairly test a larger parser, the second benchmark involves parsing JavaScript.
The parsers themselves have been constructed carefully, which has minimised the chances of
backtracking. This ensures good performance from all the libraries. The happy parser is given a
hand-written and optimised lexer. The happy grammar does have some shift-reduce conflicts from
the precedence and associativities of expressions, but the parser picks rules in the correct ordering.
This should not affect performance. Note that the parser combinator libraries do not suffer from
this problem, but care has been taken to use the chainl1 combinator to prevent left-recursion.

Again, Figure 5 shows that our library routinely outperforms other parser combinator libraries
by at least 4x and is anywhere from 1.5x to 2x faster than Happy. The fact that megaparsec
and parsec perform similarly here may suggest that megaparsec is suffering from not using its
specialised combinators in the Text benchmark, but this is not an advantage it receives with String
anyway. Even still, as previously mentioned, it is simply an advantage of our library that the naive
parsers perform very well and do not require the user to learn how to use intrinsic combinators.
Attoparsec results were not produced since the combinators return Text instead of String, making
a fair comparison difficult here. The input files used are arbitrary JavaScript programs.

6.3 Nandlang

In the final benchmark, our library is being put up against a bottom-up generated C parser. The
expectation is that C should be faster, but it provides an indication of how much further the library
has left to go with optimisations. The language chosen for this benchmark is Nandlang, which is a
simple language which has only a single operator: NAND. Otherwise, it still has the traditional
looping constructs, conditionals and functions. The only literals in the language are @, 1 or an array.

In terms of the parsers themselves, the implementation is very similar, with a key difference that
the bison parser accepts a slightly wider variant of the language due to the lexer not being selective
of which tokens should be allowed in a given context. Essentially, since parser combinators do
not often have a separate lexing stage, context-sensitive lexing comes a lot more naturally: you
may know, for instance, that within an array index, the only valid token is an integer literal. Since
two different languages are competing in this benchmark, neither will produce an AST. In C’s

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.

Staged Selective Parser Combinators 120:25

T
* 4.43
[777277) 4.44
blgnum — 4.26 —
,,, 1 4.92
1.55
4.08
L 141
game _ 4.02 *
o s s s i i i i) 14.11
1.56
6.41
/// 15.88
heapsort — 6.25 r
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 5.66
1.99
: YR 6.76
fibonacci — 6.29 —
NN 15.68
* 2.18 | | | | |

0 1 2 3 4 5 6 7
= parsec (String) parsec (Text) mm megaparsec (String)

o megaparsec (Text) mm happy (String)

Fig. 5. Performance of libraries parsing JavaScript, time relative to Parsley

case, the parser will return bool and in Haskell’s case it will return Maybe (). In order to make
use of criterion here, the C parser is invoked using the FFI, and the return value is converted to
Maybe (). Since the input needs to be sent from Haskell to C, both parsers make use of Bytestring.

Figure 6 shows that our library falls short of performance parity with bison. It is within 30% of
the performance of C, however. Again the test files are arbitrary Nandlang programs.

arrays 0.68 |

fizzbuzz 0.76 -

fibonacci 0.74 |
0 0.2 0.4 0.6 0.8

Fig. 6. Performance of bison parsing Nandlang, time relative to Parsley (as Bytestring)

7 RELATED AND FUTURE WORK

Parser generators and combinators are examples of domain-specific languages (DSLs) [Fowler
2010], with the latter an embedded DSL [Hudak 1996] where the DSL is hosted in some other
language. Parser combinator libraries are usually shallow embedded DSLs, meaning the operations
in the DSL provide a semantic action immediately. The problem is that there is overhead in the
shallow embedding and by using static analysis this could be removed, but there is no structure
left to inspect. In contrast, in a deep embedding the operations of the language are themselves just
syntax: this allows for inspection and semantics are provided by interpretation [Gibbons and Wu
2014; Leijen and Meijer 1999]. The advantage of deep-embedded DSLs is that it is now possible to
use the domain knowledge of the language to perform analysis and optimisation. Writing parser
combinators as deep embeddings has been done in the context of free monads where effect handlers
provide semantics [Wu et al. 2014]. Deep embeddings have been shown to be useful in performing
a variety of parser optimisations and allows for a translation into a more efficient language before
being interpreted [Willis and Wu 2018]. Our work further leverages the opportunities presented by
using a deep embedding and performs analysis and optimisation by removing monadic operations
and replacing some of the functionality with selectives.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.



120:26 Jamie Willis, Nicolas Wu, and Matthew Pickering

Baars and Swierstra [2004] use a deep embedding to represent grammars, which allows them to
perform transformations and analysis such as removing left-recursion. Further to this, Devreise
and Piessens [2012] interpret these deep embeddings with explicit recursion using a finally-tagless
style. Our work builds on this by modelling non-recursive let-bindings in addition to observable
recursion, which facilitates the efficient staging of the parser.

The inspiration behind the join-points stems from both traditional compilers and let-insertion [Yal-
lop 2017] in the staged world. While the problems arising from let-insertion were not covered
in this paper, a good way to handle mutual recursion and staging has already been implemented
in MetaOCaml [Yallop and Kiselyov 2019], but this is yet to make it to Haskell. Ljunglof [2002]
detects shared sections of a grammar by using unsafe IORefs, which increment a counter whenever
they are touched. However, children of a let-binding will have higher reference counts resulting in
unnecessary bindings. By using StableNames, a more accurate depiction of the sharing is achieved.

The semantics of the parsers themselves are modelled similarly to Parsec [Leijen and Meijer
2001], following the failure semantics very closely in particular. Libraries in the Parsec family are
continuation based, and are all shallow embedded DSLs. Our machine is also continuation based,
but this abstraction is largely staged away. The reason the failure semantics are useful is because it
allows the parser to provide better error messages. This is the expected behaviour of contemporary
parser combinator libraries in Haskell, and it will be important for staged error messages.

Staged parser combinators were pioneered in Scala using Light-weight Modular Staging (LMS) [Jon-
nalagedda et al. 2014]. This work illustrates how to add staging annotations to remove the abstraction
overheads of the combinators. In addition to this they used similar techniques as us to remove the
intermediate data-structures used in the parsing process. They achieved impressive performance
which easily outperforms their contemporaries in Scala, highlighting the benefits of the approach.
By using LMS [Rompf and Odersky 2010], they can rely on free optimisations like common sub-
expression elimination and they are able to pattern match on the generated code in order to perform
domain-specific optimisations. However, by pattern matching on their generated representation,
they have lost the high-level structure of the grammar: domain specific optimisations like the
applicative laws are possible in either approach, but arise very naturally from the combinators
themselves with minimal pattern-matching. By operating on a deep-embedded AST, our approach is
able to repeatedly traverse and analyse the grammar, permitting richer optimisation opportunities
including factoring out repeated length checks and fusing pure computations. By using the deep
approach, it is also possible to avoid an explicit recursion combinator and allows for easy factoring
out of common grammar rules. Our technique can be used to enhance the LMS approach even
further, but it does come at a cost of additional staging overheads that are otherwise eliminated
by compile-time code generation. However, by performing run-time code generation, they can
support monadic operations, which provide a powerful tool for protocol-based parsing. At present,
however, our library has been deliberately restricted to remove full monadic power, trading-off for
compile-time code generation and more powerful analysis opportunities, an already documented
technique [Marlow et al. 2014; McBride and Paterson 2008].

In addition, a staged parser combinator library has been developed in OCaml [Krishnaswami
and Yallop 2019], however they have only tackled non-ambiguous grammars which can be realised
by purely applicative combinators. Our work handles an extension of PEG with contextual decision
making and backtracking. Their work is a deep embedding with a largely different API and no
analysis or optimisation. They make use of a explicit fix-point operation instead of let-binding
analysis and make use of mutual let-bindings from MetaOCaml. They make explicit use of “The
Trick” [Danvy et al. 1996] — a dynamic value within a static range can be turned static by enumer-
ating all possibilities — interestingly, we also do this, but implicitly by enumerate alternatives with
the sbind :: (Selective f, Bounded a, Enum a) = fa — (a — fb) — f b operator.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.



Staged Selective Parser Combinators 120:27

Work done on parsing with derivatives [Adams et al. 2016; Brzozowski 1964; Henriksen et al. 2019]
also has subtle connections to our work, where the CPS translation of AST to Machine is similar to
differentiating with respect to that non-terminal. In particular, some derivatives work [Adams et al.
2016] also uses analysis to identify the recursion points in parsers. Recently, it has been suggested
that derivative-based parsing may form new foundations for parsing in general [Henriksen et al.
2019]: this may suggest that CPS based abstract parsing machines are also foundational.

The translation to CPS has the effect of performing a co-density transformation [Hinze 2012;
Voigtlander 2008] on the parsers themselves: if the machine had a (»=) operation, then every (»=)
would be associated to the right during compilation, this is a well known optimisation for many
monadic programs.

Both Viera et al. [2008] and Willis and Wu [2018] have implemented parser libraries by embedding
the grammars into abstract syntax trees. This allows them to process and transform the grammars
by performing optimisation and refactorings like left-factoring. The former uses template Haskell to
convert their grammars into parsers, and the latter interprets an optimised machine with warm-up
overhead. Our library produces optimised Haskell code directly, which improves performance and
unlocks more low-level optimisation opportunities.

7.1 Future Work

While selectives have proved effective at removing the need for monads in many cases, they are
not a catch-all. In order to recover the ability to interact with previous results multiple times or
look back into the past, general purpose registers will be added, using an applicative state pattern
with rank-2 polymorphism [McCracken 1984] to guarantee well-scopedness [Launchbury and
Peyton Jones 1994]. This will allow the library to be fully context-sensitive and recover all the
power of monads without loss of static analysis.

At the moment, error messages are not supported. In future, we aim to make use of the static
information of the grammar to stage away space-leaking error message building at runtime, instead
generating and inserting high-quality error messages during the compilation of the parser.

8 CONCLUSION

This paper presented the design and implementation of a parser combinator library with opti-
misation, analysis, and static compilation using staging. To accomplish this, it was necessary to
make use of selective functors as this maximises the amount of static structure in the grammar.
By expressing the parser as a deep embedding, laws of applicatives and selectives can be used to
reduce the code size of the program. Analysis can be used to factor out length checks and identify
non-terminating parsers. Any overhead is compiled away by staging, leaving an efficient core.

The benchmarks showed that this approach is effective, outperforming the conventional parser
combinator libraries in Haskell and the parser generator happy with full optimisation. At the very
least, this paper has hopefully highlighted the usefulness of the selective functor abstraction within
the realm of parsers. But moreover, it demonstrated that by leveraging meta-programming, we can
make use of the cleanest abstractions at our disposal without sacrificing any performance.

ACKNOWLEDGEMENTS

The authors would like to dedicate this paper to the memory of Doaitse Swierstra. He was an
inspiring academic and a wonderful friend that we will dearly miss. We would also like to thank all
the anonymous reviewers for their helpful and constructive comments on draft versions of this
paper and Jonathan Protzenko for shepherding this paper. This work has been supported by EPSRC
grant number EP/S028129/1 on “SCOPE: Scoped Contextual Operations and Effects”.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.



120:28 Jamie Willis, Nicolas Wu, and Matthew Pickering

REFERENCES

Michael D. Adams and Omer S. Agacan. 2014. Indentation-sensitive Parsing for Parsec. SIGPLAN Not. 49, 12 (Sept. 2014),
121-132. https://doi.org/10.1145/2775050.2633369

Michael D. Adams, Celeste Hollenbeck, and Matthew Might. 2016. On the Complexity and Performance of Parsing with
Derivatives. SIGPLAN Not. 51, 6 (June 2016), 224-236. https://doi.org/10.1145/2980983.2908128

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Andrew W. Appel. 2007. Compiling with Continuations. Cambridge University Press, USA.

Arthur L. Baars and S. Doaitse Swierstra. 2004. Type-Safe, Self Inspecting Code. In Proceedings of the 2004 ACM SIGPLAN
Workshop on Haskell (Snowbird, Utah, USA) (Haskell 4AZ04). Association for Computing Machinery, New York, NY, USA,
69-79. https://doi.org/10.1145/1017472.1017485

Nick Benton. 2005. A Typed, Compositional Logic for a Stack-Based Abstract Machine. 364-380. https://doi.org/10.1007/
11575467_24

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964), 481-494. https://doi.org/10.1145/
321239.321249

Olivier Danvy, Karoline Malmkjeer, and Jens Palsberg. 1996. Eta-expansion Does The Trick. ACM Trans. Program. Lang. Syst.
18, 6 (Nov. 1996), 730-751. https://doi.org/10.1145/236114.236119

Germéan Andrés Delbianco, Mauro Jaskelioff, and Alberto Pardo. 2012. Applicative Shortcut Fusion. In Trends in Functional
Programming, Ricardo Pefia and Rex Page (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 179-194.

Dominique Devreise and Frank Piessens. 2012. Finally tagless observable recursion for an abstract grammar model. Journal
of Functional Programming 22, 6 (2012), 757-796. https://doi.org/10.1017/S0956796812000226

Bryan Ford. 2002. Packrat Parsing : a Practical Linear-Time Algorithm with Backtracking by. Ph.D. Dissertation.

Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-based Syntactic Foundation. SIGPLAN Not. 39, 1 (Jan. 2004),
111-122. https://doi.org/10.1145/982962.964011

Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley Professional.

Jeremy Gibbons and Ralf Hinze. 2011. Just Do It: Simple Monadic Equational Reasoning. SIGPLAN Not. 46, 9 (Sept. 2011),
2-14. https://doi.org/10.1145/2034574.2034777

Jeremy Gibbons and Nicolas Wu. 2014. Folding Domain-specific Languages: Deep and Shallow Embeddings (Functional
Pearl). In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg,
Sweden) (ICFP ’14). ACM, New York, NY, USA, 339-347. https://doi.org/10.1145/2628136.2628138

Andy Gill. 2009. Type-Safe Observable Sharing in Haskell. In Proceedings of the 2nd ACM SIGPLAN Symposium on
Haskell (Edinburgh, Scotland) (Haskell *09). Association for Computing Machinery, New York, NY, USA, 117-128.
https://doi.org/10.1145/1596638.1596653

Andy Gill and Simon Marlow. 1995. Happy: the parser generator for Haskell.

Tatsuya Hagino. 1987. Category theoretic approach to data types. Ph.D. Dissertation. PhD thesis, University of Edinburgh.

Ian Henriksen, Gianfranco Bilardi, and Keshav Pingali. 2019. Derivative Grammars: A Symbolic Approach to Parsing with
Derivatives. Proc. ACM Program. Lang. 3, OOPSLA, Article 127 (Oct. 2019), 28 pages. https://doi.org/10.1145/3360553

Ralf Hinze. 2012. Kan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick. In Mathematics of Program
Construction, Jeremy Gibbons and Pablo Nogueira (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 324-362.

Ralf Hinze and Nicolas Wu. 2013. Histo- and Dynamorphisms Revisited. In Proceedings of the 9th ACM SIGPLAN Workshop
on Generic Programming (Boston, Massachusetts, USA) (WGP ’13). Association for Computing Machinery, New York, NY,
USA, 1-12. https://doi.org/10.1145/2502488.2502496

Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. 2013. Unifying Structured Recursion Schemes. In Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13). Association for
Computing Machinery, New York, NY, USA, 209-220. https://doi.org/10.1145/2500365.2500578

Paul Hudak. 1996. Building Domain-specific Embedded Languages. ACM Comput. Surv. 28, 4es, Article 196 (Dec. 1996).
https://doi.org/10.1145/242224.242477

Graham Hutton. 1992. Higher-order functions for parsing. Journal of Functional Programming 2, 3 (1992), 323-343.
https://doi.org/10.1017/S0956796800000411

Graham Hutton and Erik Meijer. 1996. Monadic Parser Combinators. Technical Report NOTTCS-TR-96-4. Department of
Computer Science, University of Nottingham.

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Odersky. 2014. Staged Parser Combinators
for Efficient Data Processing. SIGPLAN Not. 49, 10 (Oct. 2014), 637-653. https://doi.org/10.1145/2714064.2660241

Andrew Kennedy. 2007. Compiling with Continuations, Continued. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming (Freiburg, Germany) (ICFP ’07). Association for Computing Machinery, New York,
NY, USA, 177-190. https://doi.org/10.1145/1291151.1291179

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.


https://doi.org/10.1145/2775050.2633369
https://doi.org/10.1145/2980983.2908128
https://doi.org/10.1145/1017472.1017485
https://doi.org/10.1007/11575467_24
https://doi.org/10.1007/11575467_24
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/236114.236119
https://doi.org/10.1017/S0956796812000226
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/2034574.2034777
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/1596638.1596653
https://doi.org/10.1145/3360553
https://doi.org/10.1145/2502488.2502496
https://doi.org/10.1145/2500365.2500578
https://doi.org/10.1145/242224.242477
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1145/2714064.2660241
https://doi.org/10.1145/1291151.1291179

Staged Selective Parser Combinators 120:29

Csongor Kiss, Matthew Pickering, and Nicolas Wu. 2018. Generic Deriving of Generic Traversals. Proc. ACM Program. Lang.
2, ICFP, Article 85 (July 2018), 30 pages. https://doi.org/10.1145/3236780

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (May 1997), 427-443. https:
//doi.org/10.1145/256167.256195

Neelakantan R. Krishnaswami and Jeremy Yallop. 2019. A Typed, Algebraic Approach to Parsing. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). ACM,
New York, NY, USA, 379-393. https://doi.org/10.1145/3314221.3314625

John Launchbury and Simon L. Peyton Jones. 1994. Lazy Functional State Threads. SIGPLAN Not. 29, 6 (June 1994), 24-35.
https://doi.org/10.1145/773473.178246

Daan Leijen and Erik Meijer. 1999. Domain Specific Embedded Compilers. SIGPLAN Not. 35, 1 (Dec. 1999), 109-122.
https://doi.org/10.1145/331963.331977

Daan Leijen and Erik Meijer. 2001. Parsec: Direct Style Monadic Parser Combinators For The Real World. Technical Report.
Microsoft.

Peter Ljunglof. 2002. Pure Functional Parsing. Ph.D. Dissertation. Chalmers University of Technology and Goéteborg
University.

Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. 2014. There is No Fork: An Abstraction for Efficient,
Concurrent, and Concise Data Access. SIGPLAN Not. 49, 9 (Aug. 2014), 325-337. https://doi.org/10.1145/2692915.2628144

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. 2017. Compiling without continuations. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 482-494. https://doi.org/10.1145/
3062341.3062380

Conor McBride. 2011. Functional pearl: Kleisli arrows of outrageous fortune. Journal of Functional Programming (accepted
for publication) (2011).

Conor McBride and Ross Paterson. 2008. Applicative programming with effects. Journal of Functional Programming 18, 1
(2008), 1-13. https://doi.org/10.1017/S0956796807006326

Nancy McCracken. 1984. The Typechecking of Programs with Implicit Type Structure.. In Proc. Of the International
Symposium on Semantics of Data Types (Sophia-Antipolis, France). Springer-Verlag New York, Inc., New York, NY, USA,
301-315. http://dl.acm.org/citation.cfm?id=1096.1107

Andrey Mokhov, Georgy Lukyanov, Simon Marlow, and Jeremie Dimino. 2019. Selective Applicative Functors. Proc. ACM
Program. Lang. 3, ICFP, Article 90 (July 2019), 29 pages. https://doi.org/10.1145/3341694

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. 2002. Stack-Based Typed Assembly Language. J. Funct. Program.
12, 1 (Jan. 2002), 43-88. https://doi.org/10.1017/S0956796801004178

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation
and Compiled DSLs. SIGPLAN Not. 46, 2 (Oct. 2010), 127-136. https://doi.org/10.1145/1942788.1868314

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. SIGPLAN Not. 37, 12 (Dec. 2002),
60-75. https://doi.org/10.1145/636517.636528

S. Doaitse Swierstra. 2009. Combinator Parsing: A Short Tutorial. Springer Berlin Heidelberg, Berlin, Heidelberg, 252-300.
https://doi.org/10.1007/978-3-642-03153-3_6

S. Doaitse Swierstra and Luc Duponcheel. 1996. Deterministic, Error-Correcting Combinator Parsers. In Advanced Functional
Programming, Second International School-Tutorial Text. Springer-Verlag, London, UK, 184-207. http://dl.acm.org/citation.
cfm?id=647699.734159

Walid Taha and Tim Sheard. 1997. Multi-stage Programming with Explicit Annotations. SIGPLAN Not. 32, 12 (Dec. 1997),
203-217. https://doi.org/10.1145/258994.259019

Tarmo Uustalu and Varmo Vene. 1999. Primitive (Co)Recursion and Course-of-Value (Co)lteration, Categorically. Informatica
10 (1999), 5-26.

Marcos Viera, S. Doaitse Swierstra, and Eelco Lempsink. 2008. Haskell, Do You Read Me? Constructing and Composing
Efficient Top-down Parsers at Runtime. In Proceedings of the First ACM SIGPLAN Symposium on Haskell (Victoria, BC,
Canada) (Haskell *08). Association for Computing Machinery, New York, NY, USA, 63-74. https://doi.org/10.1145/
1411286.1411296

Janis Voigtlander. 2008. Asymptotic Improvement of Computations over Free Monads. In Mathematics of Program Con-
struction, Philippe Audebaud and Christine Paulin-Mohring (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
388-403.

Philip Wadler. 1985. How to replace failure by a list of successes a method for exception handling, backtracking, and pattern
matching in lazy functional languages. In Functional Programming Languages and Computer Architecture, Jean-Pierre
Jouannaud (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 113-128.

Jamie Willis and Nicolas Wu. 2018. Garnishing Parsec with Parsley. In Proceedings of the 9th ACM SIGPLAN International
Symposium on Scala (St. Louis, MO, USA) (Scala ’18). ACM, New York, NY, USA, 24-34. https://doi.org/10.1145/3241653.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.


https://doi.org/10.1145/3236780
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1145/773473.178246
https://doi.org/10.1145/331963.331977
https://doi.org/10.1145/2692915.2628144
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1017/S0956796807006326
http://dl.acm.org/citation.cfm?id=1096.1107
https://doi.org/10.1145/3341694
https://doi.org/10.1017/S0956796801004178
https://doi.org/10.1145/1942788.1868314
https://doi.org/10.1145/636517.636528
https://doi.org/10.1007/978-3-642-03153-3_6
http://dl.acm.org/citation.cfm?id=647699.734159
http://dl.acm.org/citation.cfm?id=647699.734159
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/1411286.1411296
https://doi.org/10.1145/1411286.1411296
https://doi.org/10.1145/3241653.3241656
https://doi.org/10.1145/3241653.3241656

120:30 Jamie Willis, Nicolas Wu, and Matthew Pickering

3241656
Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. In Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell (Gothenburg, Sweden) (Haskell 4AZ14). Association for Computing Machinery, New York, NY,

USA, 1-12. https://doi.org/10.1145/2633357.2633358
Jeremy Yallop. 2017. Staged Generic Programming. Proc. ACM Program. Lang. 1, ICFP, Article 29 (Aug. 2017), 29 pages.

https://doi.org/10.1145/3110273
Jeremy Yallop and Oleg Kiselyov. 2019. Generating Mutually Recursive Definitions. In Proceedings of the 2019 ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation (Cascais, Portugal) (PEPM 2019). ACM, New York, NY, USA,
75-81. https://doi.org/10.1145/3294032.3294078

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 120. Publication date: August 2020.


https://doi.org/10.1145/3241653.3241656
https://doi.org/10.1145/3241653.3241656
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3110273
https://doi.org/10.1145/3294032.3294078

	Abstract
	1 Introduction
	2 Background
	3 The Combinator Tree
	3.1 Combinator Tree Optimisation
	3.2 Recursion and Let-bindings
	3.3 Analysis

	4 Compilation to Abstract Machine
	4.1 The Machine
	4.2 Machine Optimisation
	4.3 Consumption Analysis Revisited

	5 Staged Interpretation
	5.1 Interpreting a Machine
	5.2 Background: Staging
	5.3 Staging the Interpreter

	6 Benchmarks
	6.1 Branflakes
	6.2 JavaScript
	6.3 Nandlang

	7 Related and Future Work
	7.1 Future Work

	8 Conclusion
	References

